Non-parametric combination and related permutation tests for neuroimaging

Article English OPEN
Winkler, Anderson M ; Webster, Matthew A ; Brooks, Jonathan C ; Tracey, Irene ; Smith, Stephen M ; Nichols, Thomas E (2016)
  • Publisher: John Wiley and Sons
  • Journal: (issn: 1065-9471, vol: 37, pp: 1,486-1,511)
  • Related identifiers: doi: 10.1002/hbm.23115, doi: 10.1002/hbm.23115, pmc: PMC4783210
  • Subject: Algorithms | Magnetic Resonance Imaging | Research Article | /dk/atira/pure/researchoutput/pubmedpublicationtype/D013485 | conjunctions | non‐parametric combination | Research Support, Non-U.S. Gov't | Neuroimaging/methods | Pain Measurement | multiple testing | : Multidisciplinary, general & others [Physical, chemical, mathematical & earth Sciences] | Magnetic Resonance Imaging/methods | non-parametric combination | Image Processing, Computer-Assisted/methods | /dk/atira/pure/researchoutput/pubmedpublicationtype/D016428 | permutation tests | Pain Measurement/methods | : Multidisciplinaire, général & autres [Physique, chimie, mathématiques & sciences de la terre] | /dk/atira/pure/researchoutput/pubmedpublicationtype/D052061 | general linear model | RA | Cerebral Cortex/physiology/physiopathology | Neuroimaging | Cerebral Cortex | Research Support, N.I.H., Extramural | Statistics, Nonparametric | Journal Article | Research Articles | Humans | Image Processing, Computer-Assisted

Abstract In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well‐known definition of union‐intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume‐based representations of the brain, including non‐imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non‐parametric combination (NPC) methodology, such that instead of a two‐phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one‐way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486‐1511, 2016. © 2016 Wiley Periodicals, Inc.
  • References (103)
    103 references, page 1 of 11

    Abou Elseoud A, Nissila€ J, Liettu A, Remes J, Jokelainen J, Takala T, Aunio A, Starck T, Nikkinen J, Koponen H, Zang YF, Tervonen O, Timonen M, Kiviniemi V (2014): Altered restingstate activity in seasonal affective disorder. Hum Brain Mapp 35:161-172.

    Anderson TW (2003): An Introduction to Multivariate Statistical Analysis. Hoboken, NJ: Wiley.

    Benjamini Y, Hochberg Y (1995): Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289-300.

    Benjamini Y, Heller R (2008): Screening for partial conjunction hypotheses. Biometrics 64:1215-1222.

    Berger RL (1982): Multiparameter hypothesis testing and acceptance sampling. Technometrics 24:295-300.

    Berk RH, Cohen A (1979): Asymptotically optimal methods of combining tests. J Am Stat Assoc 74:812-814.

    Bhandary M, Zhang X (2011): Comparison of several tests for combining several independent tests. J Modern Appl Stat Meth 10:436-446.

    Birnbaum A (1954): Combining independent tests of significance. J Am Stat Assoc 49:559-574.

    Blair RC, Higgins JJ, Karniski W, Kromrey JD (1994): A study of multivariate permutation tests which may replace Hotelling's T2 test in prescribed circumstances. Multivariate Behav Res 29: 141-163.

    Bland JM, Altman DG (1986): Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307-310.

  • Metrics
    No metrics available