A method to formulate a dimensionally homogeneous Jacobian of parallel manipulators

Article English OPEN
Liu, H.; Huang, Tian; Chetwynd, D. G.;
  • Publisher: Institute of Electrical and Electronic Engineers
  • Identifiers: doi: 10.1109/TRO.2010.2082091
  • Subject: QA | TJ
    arxiv: Computer Science::Robotics

This paper presents a general and systematic approach to formulate the dimensionally homogeneous Jacobian, which is an important issue for the dexterity evaluation and dimensional synthesis of f-degrees-of-freedom (DOF) (f ≤ 6) parallel manipulators having mixed rotatio... View more
  • References (24)
    24 references, page 1 of 3

    [1] H. Lipkin, J. Duffy, “Hybrid twist and wrench control for a robotic manipulator,” ASME J. Mech. Trans. Automat. Des., vol. 110, pp. 138-144, June 1988.

    [2] K. Doty, C. Melchiorri, and C. Bonevento, “A theory of generalized inverse applied to robotics,” Int. J. Robot. Res., vol. 12, no. 1, pp. 1-19, Feb. 1993.

    [3] K. L. Doty, C. Melchiorri, E. M. Schwartz, and C. Bonevento, “Robot manipulability,” IEEE Trans. Robot. Autom., vol. 11, pp. 462-468, June 1995.

    [4] O. Ma, J. Angeles, “Optimum architecture design of platform manipulators,” The fifth International Conference on Advanced Robotics, vol. 2, pp. 1130-1135, 1991.

    [5] M. Tandirci, J. Angeles, F. Ranjbaran, “Characteristic point and the characteristic length of robotic manipulators,” ASME Des. Eng. Division, vol. 45, pp. 203-208, 1992.

    [6] J. Angeles, F. Ranjbaran, and R. V. Patel, “On the design of the kinematic structure of seven-axes redundant manipulators for maximum conditioning,” in Proc. IEEE Int. Conf. Robotics and Automation, Nice, France, May 10-15, pp. 494-499, 1992.

    [7] J. Angeles, “Kinematic isotropy in humans and machines,” in Proc. IFToMM 9th World Congr. Theory Mach. Mech., Milan, Italy, Aug. 29-Sept. 2, vol. 1, pp. XLII-XLIX, 1995.

    [8] J. Angeles, “Is there a characteristic length of a rigid-body displacement ?” Mech. Mach. Theory, vol. 41, no. 8, pp. 884-896, 2006.

    [9] W. A. Khan, J. Angeles, “The kinetostatic optimization of robotic manipulators: The inverse and the direct problems,” ASME J. Mech. Des., vol. 128, no. 1, pp. 168-178, 2006.

    [10] J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, 3rd ed. New York: Springer-Verlag, 2003.

  • Metrics
Share - Bookmark