Some closure results for C-approximable groups\ud

Article English OPEN
Holt, Derek F.; Rees, Sarah;
(2017)

We investigate closure results for $\C$-approximable groups, for certain classes $\C$ of groups with invariant length functions. In particular we prove, each time for certain (but not necessarily the same) classes $\C$ that: \linebreak (i) the direct product of two $\C$... View more
  • References (12)
    12 references, page 1 of 2

    [Arzhantseva and Gal 2013] G. Arzhantseva and S. Gal, “On approximation properties of semi-direct products of groups”, preprint, 2013. arXiv

    [Arzhantseva and Pa˘unescu 2017] G. Arzhantseva and L. Pa˘unescu, “Linear sofic groups and algebras”, Trans. Amer. Math. Soc. 369:4 (2017), 2285-2310. MR Zbl [Brown et al. 2008] N. P. Brown, K. J. Dykema, and K. Jung, “Free entropy dimension in amalgamated free products”, Proc. Lond. Math. Soc. .3/ 97:2 (2008), 339-367. MR Zbl [Capraro and Lupini 2015] V. Capraro and M. Lupini, Introduction to sofic and hyperlinear groups and Connes' embedding conjecture, Lecture Notes in Mathematics 2136, Springer, 2015. MR Zbl [Ciobanu et al. 2014] L. Ciobanu, D. F. Holt, and S. Rees, “Sofic groups: graph products and graphs of groups”, Pacific J. Math. 271:1 (2014), 53-64. MR Zbl

    [Dixon and Mortimer 1996] J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics 163, Springer, 1996. MR Zbl

    [Elek and Szabó 2005] G. Elek and E. Szabó, “Hyperlinearity, essentially free actions and L2- invariants: the sofic property”, Math. Ann. 332:2 (2005), 421-441. MR Zbl [Elek and Szabó 2006] G. Elek and E. Szabó, “On sofic groups”, J. Group Theory 9:2 (2006), 161-171. MR Zbl

    [Elek and Szabó 2011] G. Elek and E. Szabó, “Sofic representations of amenable groups”, Proc. Amer. Math. Soc. 139:12 (2011), 4285-4291. MR Zbl

    [Glebsky 2015] L. Glebsky, “Approximation of groups, characterizations of sofic groups, and equations over groups”, preprint, 2015. arXiv

    [Hayes and Sale 2016] B. Hayes and A. Sale, “The wreath product of two sofic groups is sofic”, preprint, 2016. arXiv

    [Higman 1951] G. Higman, “A finitely generated infinite simple group”, J. London Math. Soc. .2/ 26 (1951), 61-64. MR Zbl

    [Pa˘unescu 2011] L. Pa˘unescu, “On sofic actions and equivalence relations”, J. Funct. Anal. 261:9 (2011), 2461-2485. MR Zbl

    [Pestov and Kwiatkowska 2009] V. G. Pestov and A. Kwiatkowska, “An introduction to hyperlinear and sofic groups”, preprint, 2009. arXiv

  • Similar Research Results (3)
  • Metrics
Share - Bookmark