Share  Bookmark

 Download from


[1] Alboul, L. S., AbdulRahman, H., Haynes, P. S., Penders, J., An approach to multirobot site exploration based on principles of selforganization,Intelligent Robotics and Applications  Third International Conference, ICIRA 2010, Shanghai, China, November 1012, 2010. Proceedings, Part II, LNCS 6425, pp. 717729, Springer, 2010.
[2] Haynes, P. S., Alboul, L. S., 2011. Hamiltonian Walks in Embedded Planar Graphs, In preparation.
[3] Alboul, L. and Echeveria, G. and Rodrigues, M., 2004. Curvature criteria to fit curves to discrete data. EWCG 19th European Workshop on Computational Geometry.
[4] Baker, B. S, 1994. Approximation algorithms for NPcomplete problems on planar graphs. Journal of the Association for Computing Machinery, 41:1, pp. 153180.
[5] Tutte, W. T., 1956. A theorem on planar graphs. Transactions of American Mathematical Society, 82, pp. 99116.
[6] Tutte, W. T., 1977. Bridges and Hamiltonian circuits in planar graphs. Aequationes Mathematica, 15, pp. 133.
[7] Gerkey, B., Mataric, M., Multirobot task allocation: Analyzing the complexity and optimality of key architectures. In: Proc. of the IEEE International Conference on Robotics and Automation (ICRA) (2003).
[8] Bailey, T.; DurrantWhyte, H., Simultaneous localization and mapping (SLAM): part II,. IEEE Robotics and Automation Magazine, V.13(3), pp. 108117.
[9] Dieter Fox, Wolfram Burgard, Hannes Kruppa, and Sebastian Thrun, A probabilistic approach to collaborative multirobot localization. Autonomous Robots, 8(3):325344, 2000.
[10] Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, and D., Stewart, B.: Distributed Multirobot Exploration and Mapping. Proceedings of the IEEE, Vol. 94, No. 7, pp. 13251339, (2006).