publication . Article . 2016

Optical absorption of ion-beam sputtered amorphous silicon coatings

Steinlechner, Jessica; Martin, Iain W.; Bassiri, Riccardo; Bell, Angus; Fejer, Martin M.; Hough, Jim; Markosyan, Ashot; Route, Roger K.; Rowan, Sheila; Tornasi, Zeno;
  • Published: 15 Mar 2016
  • Country: India
Abstract
Low mechanical loss at low temperatures and a high index of refraction should make silicon\ud optimally suited for thermal noise reduction in highly reflective mirror coatings for gravitational wave\ud detectors. However, due to high optical absorption, amorphous silicon (aSi) is unsuitable for being used\ud as a direct high-index coating material to replace tantala. A possible solution is a multimaterial design,\ud which enables exploitation of the excellent mechanical properties of aSi in the lower coating layers. The\ud possible number of aSi layers increases with absorption reduction. In this work, the optimum heat\ud treatment temperature of aSi deposited v...
Subjects
free text keywords: Optoelectronics, business.industry, business, Sputtering, Refractive index, Absorption (pharmacology), Amorphous silicon, chemistry.chemical_compound, chemistry, Coating, engineering.material, engineering, Ion beam, Physics, Silicon, chemistry.chemical_element, Deposition (law), Optics, Quantum electrodynamics
Related Organizations
Funded by
RCUK| Investigations in Gravitational Radiation
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: ST/L000946/1
  • Funding stream: STFC
,
NSF| Stanford Program in Support of LIGO
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1404430
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
28 references, page 1 of 2

1SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland 2E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA (Dated: January 16, 2017)

[2] R. Adhikari et al., LIGO III Blue ConceptLIGO, Technical Document LIGO-G1200573, dcc.ligo.org/LIGOG1200573-v1/public (2012)

[3] M. Abernathy et al., Einstein gravitational wave Telescope (ET) conceptual design study, ET-0106C-10, https://tds.ego-gw.it/ql/?c=7954 (2011)

[4] S Hild, S Chelkowski, A Freise, J Franc, N Morgado, R Flaminio, and R DeSalvo, A xylophone configuration for a third-generation gravitational wave detector, Classical Quantum Gravity 27, 015003 (2010) [OpenAIRE]

[5] M. E. Fine, H. van Duyne, and N. T. Kenney, LowTemperature Internal Friction and Elasticity Effects in Vitreous Silica, J. Appl. Phys. 25 402-5 (1954)

[6] R. Nawrodt et al., High mechanical Q-factor measurements on silicon bulk samples, Journal of Physics: Conference Series 122, 012008 (2008) [OpenAIRE]

[7] D. F. McGuigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglass, H. W. Gutche, Measurements of the mechanical Q of single-crystal silicon at low temperatures, Journal of Low Temperature Physics 30, 624-629 (1978) [OpenAIRE]

[8] S. Rowan, R. L. Byer, M. M. Fejer, R. Route, G. Cagnoli, D. R. M. Crooks, J. Hough, P. H. Sneddon, W. Winkler, Test mass materials for a new generation of gravitational wave detectors, Proceedings of SPIE 4856, 292- 297 (2003) [OpenAIRE]

[9] W. Winkler, K. Danzmann, A. Ru¨diger, and R. Schilling, Heating by optical absorption and the performance of interferometric gravitational-wave detectors, Physical Review A 44, 7022-7036 (1991)

[10] M. J. Keevers, and M. A. Green, Absorption edge of silicon from solar cell spectral response measurements, Appl. Phys. Lett. 66, 174-176 (1995) [OpenAIRE]

[11] J. Degallaix, R. Flaminio, D. Forest, M. Granata, C. Michel, L. Pinard, T. Bertrand, G. Cagnoli, Bulk optical absorption of high resistivity silicon at 1550 nm, Optics Letter 38, 2047-2049 (2013) [OpenAIRE]

[12] I. W. Martin et al., Low temperature mechanical dissipation of an ion-beam sputtered silica film, Classical Quantum Gravity 31, 035019 (2014)

[13] Iain W. Martin et al., Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2, Classical Quantum Gravity 26, 155012 (2009)

[14] Gregory M. Harry et al., ”Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings”, Class. Quantum Grav. 19, 897-917 (2002)

[15] X. Liu, C. L. Spiel, R. D. Merithew, R. O. Pohl, B. P. Nelson, Q. Wang, R. S. Crandall, Internal friction of amorphous and nanocrystalline silicon at low temperatures, Materials Science and Engineering A 442 307-313, (2006) [OpenAIRE]

28 references, page 1 of 2
Abstract
Low mechanical loss at low temperatures and a high index of refraction should make silicon\ud optimally suited for thermal noise reduction in highly reflective mirror coatings for gravitational wave\ud detectors. However, due to high optical absorption, amorphous silicon (aSi) is unsuitable for being used\ud as a direct high-index coating material to replace tantala. A possible solution is a multimaterial design,\ud which enables exploitation of the excellent mechanical properties of aSi in the lower coating layers. The\ud possible number of aSi layers increases with absorption reduction. In this work, the optimum heat\ud treatment temperature of aSi deposited v...
Subjects
free text keywords: Optoelectronics, business.industry, business, Sputtering, Refractive index, Absorption (pharmacology), Amorphous silicon, chemistry.chemical_compound, chemistry, Coating, engineering.material, engineering, Ion beam, Physics, Silicon, chemistry.chemical_element, Deposition (law), Optics, Quantum electrodynamics
Related Organizations
Funded by
RCUK| Investigations in Gravitational Radiation
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: ST/L000946/1
  • Funding stream: STFC
,
NSF| Stanford Program in Support of LIGO
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1404430
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
28 references, page 1 of 2

1SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland 2E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA (Dated: January 16, 2017)

[2] R. Adhikari et al., LIGO III Blue ConceptLIGO, Technical Document LIGO-G1200573, dcc.ligo.org/LIGOG1200573-v1/public (2012)

[3] M. Abernathy et al., Einstein gravitational wave Telescope (ET) conceptual design study, ET-0106C-10, https://tds.ego-gw.it/ql/?c=7954 (2011)

[4] S Hild, S Chelkowski, A Freise, J Franc, N Morgado, R Flaminio, and R DeSalvo, A xylophone configuration for a third-generation gravitational wave detector, Classical Quantum Gravity 27, 015003 (2010) [OpenAIRE]

[5] M. E. Fine, H. van Duyne, and N. T. Kenney, LowTemperature Internal Friction and Elasticity Effects in Vitreous Silica, J. Appl. Phys. 25 402-5 (1954)

[6] R. Nawrodt et al., High mechanical Q-factor measurements on silicon bulk samples, Journal of Physics: Conference Series 122, 012008 (2008) [OpenAIRE]

[7] D. F. McGuigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglass, H. W. Gutche, Measurements of the mechanical Q of single-crystal silicon at low temperatures, Journal of Low Temperature Physics 30, 624-629 (1978) [OpenAIRE]

[8] S. Rowan, R. L. Byer, M. M. Fejer, R. Route, G. Cagnoli, D. R. M. Crooks, J. Hough, P. H. Sneddon, W. Winkler, Test mass materials for a new generation of gravitational wave detectors, Proceedings of SPIE 4856, 292- 297 (2003) [OpenAIRE]

[9] W. Winkler, K. Danzmann, A. Ru¨diger, and R. Schilling, Heating by optical absorption and the performance of interferometric gravitational-wave detectors, Physical Review A 44, 7022-7036 (1991)

[10] M. J. Keevers, and M. A. Green, Absorption edge of silicon from solar cell spectral response measurements, Appl. Phys. Lett. 66, 174-176 (1995) [OpenAIRE]

[11] J. Degallaix, R. Flaminio, D. Forest, M. Granata, C. Michel, L. Pinard, T. Bertrand, G. Cagnoli, Bulk optical absorption of high resistivity silicon at 1550 nm, Optics Letter 38, 2047-2049 (2013) [OpenAIRE]

[12] I. W. Martin et al., Low temperature mechanical dissipation of an ion-beam sputtered silica film, Classical Quantum Gravity 31, 035019 (2014)

[13] Iain W. Martin et al., Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2, Classical Quantum Gravity 26, 155012 (2009)

[14] Gregory M. Harry et al., ”Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings”, Class. Quantum Grav. 19, 897-917 (2002)

[15] X. Liu, C. L. Spiel, R. D. Merithew, R. O. Pohl, B. P. Nelson, Q. Wang, R. S. Crandall, Internal friction of amorphous and nanocrystalline silicon at low temperatures, Materials Science and Engineering A 442 307-313, (2006) [OpenAIRE]

28 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2016

Optical absorption of ion-beam sputtered amorphous silicon coatings

Steinlechner, Jessica; Martin, Iain W.; Bassiri, Riccardo; Bell, Angus; Fejer, Martin M.; Hough, Jim; Markosyan, Ashot; Route, Roger K.; Rowan, Sheila; Tornasi, Zeno;