Highly asymmetric magnetic domain wall propagation due\ud to coupling to a periodic pinning potential

Article English OPEN
Novak, R.L. ; Metaxas, P.J. ; Jamet, J.P. ; Weil, R. ; Ferre, J. ; Mougin, A. ; Rohart, S. ; Stamps, R. ; Zermatten, P.J. ; Gaudin, G. ; Baltz, V. ; Rodmacq, B. (2015)

Magneto-optical microscopy and magnetometry have been used to study\ud 19 magnetization reversal in an ultrathin magnetically soft [Pt/Co]2 ferromagnetic film\ud 20 coupled to an array of magnetically harder [Co/Pt]4 nanodots via a predominantly\ud 21 dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially\ud 22 periodic pinning potential for domain walls propagating through the continuous\ud 23 magnetic film. When reversing the applied field with respect to the static nanodot\ud 24 array magnetization orientation, strong asymmetries in the wall velocity and switching\ud 25 fields are observed. Asymmetric switching fields mean that the hysteresis of the film is\ud 26 characterized by a large bias field of dipolar origin which is linked to the wall velocity\ud 27 asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields\ud 28 where the domains become round and compact. A field-polarity-controlled transition\ud 29 from dendritic to compact faceted domain structures is also seen at low field and a\ud 30 model is proposed to interpret the transition.
  • References (49)
    49 references, page 1 of 5

    [1] P. J. Metaxas, P.-J. Zermatten, J.-P. Jamet, J. Ferr´e, G. Gaudin, B. Rodmacq, A. Schuhl, and R. L. Stamps. Periodic magnetic domain wall pinning in an ultrathin film with perpendicular anisotropy generated by the stray magnetic field of a ferromagnetic nanodot array. Appl. Phys. Lett., 94(13):132504, 2009.

    [2] P. J. Metaxas, P.-J. Zermatten, R. L. Novak, S. Rohart, J.-P. Jamet, R. Weil, J. Ferr´e, A. Mougin, R. L. Stamps, G. Gaudin, V. Baltz, and B. Rodmacq. Spatially periodic domain wall pinning potentials: Asymmetric pinning and dipolar biasing. J. Appl. Phys., 113(7):073906, 2013.

    [3] A. M. Ettouhami and L Radzihovsky. Velocity-force characteristics of an interface driven through a periodic potential. Phys. Rev. B, 67:115412, Mar 2003.

    [4] S. Lemerle, J. Ferr´e, C. Chappert, V. Mathet, T. Giamarchi, and P. Le Doussal. Domain Wall Creep in an Ising Ultrathin Magnetic Film. Phys. Rev. Lett., 80:849-852, Jan 1998.

    [5] P. J. Metaxas, J.-P. Jamet, A. Mougin, M. Cormier, J. Ferr´e, V. Baltz, B. Rodmacq, B. Dieny, and R. L. Stamps. Creep and Flow Regimes of Magnetic Domain-Wall Motion in Ultrathin Pt/Co/Pt Films with Perpendicular Anisotropy. Phys. Rev. Lett., 99:217208, Nov 2007.

    [6] A Fraile Rodr´ıguez, L J Heyderman, F Nolting, A Hoffmannand J E Pearson, L M Doeswijk, M A F van den Boogaart, and J Brugger. Permalloy thin films exchange coupled to arrays of cobalt islands. Appl. Phys. Lett., 89:142508, 2006.

    [7] G Rodr´ıguez-Rodr´ıguez, A P´erez-Junquera, M V´elez, J V Anguita, J I Mart´ın, H Rubio, and J M Alameda. MFM observations of domain wall creep and pinning effects in amorphous CoxSi1−x films with diluted arrays of antidots. J. Phys. D: Appl. Phys., 40:3051-3055, 2007.

    [8] A. P´erez-Junquera, V. I. Marconi, A. B. Kolton, L. M. A´lvarez-Prado, Y. Souche, A. Alija, M. V´elez, J. V. Anguita, J. M. Alameda, J. I. Mart´ın, and J. M. R. Parrondo. Crossed-Ratchet Effects for Magnetic Domain Wall Motion. Phys. Rev. Lett., 100(3):037203, 2008.

    477 [9] Lili Ji, A. Orlov, G.H. Bernstein, W. Porod, and G. Csaba. Domain-wall trapping and control on

    478 submicron magnetic wire by localized field. In 9th IEEE Conference on Nanotechnology, 2009.

  • Metrics
    No metrics available
Share - Bookmark