Deficits in the Activation of Human Oculomotor Nuclei in Chronic Traumatic Brain Injury

Article English OPEN
Tyler, Christopher W. ; Likova, Lora T. ; Mineff, Kristyo N. ; Nicholas, Spero C. (2015)
  • Publisher: Frontiers Media S.A.
  • Journal: Frontiers in Neurology, volume 6 (issn: 1664-2295, eissn: 1664-2295)
  • Related identifiers: doi: 10.3389/fneur.2015.00173, pmc: PMC4548181
  • Subject: RC0321 | Neuroscience | oculomotor | traumatic brain injury | eye movements | vergence | binocular | fMRI | dynamics | RE | Original Research
    mesheuropmc: genetic structures | eye diseases

Binocular eye movements form a finely tuned system that requires accurate coordination of the oculomotor dynamics of the brainstem control nuclei when tracking the fine binocular disparities required for 3D vision. They are particularly susceptible to disruption by brain injury and other neural dysfunctions. Here, we report functional magnetic resonance imaging activation of the brainstem oculomotor control nuclei by binocular saccadic and vergence eye movements, and significant reductions in their response amplitudes in mild or diffuse traumatic brain injury (dTBI). Bilateral signals were recorded from a non-TBI control group (n = 11) in the oculomotor control system of the superior colliculi, the oculomotor nuclei, the abducens nuclei, and in the supra-oculomotor area (SOA), which mediate vergence eye movements. Signals from these nuclei were significantly reduced overall in a dTBI group (n = 12) and in particular for the SOA for vergence movements, which also showed significant decreases in velocity for both the convergence and divergence directions.
  • References (24)
    24 references, page 1 of 3

    1. Bahill AT, Clark M, Stark L. The main sequence, a tool for studying human eye movements. Math Biosci (1975) 24:191-204. doi:10.1016/0025-5564(75) 90075-9

    2. Gandhi NJ, Sparks DL. Changing views of the role of the superior colliculus in the control of gaze. In: Chalupa LM, Werner JS, editors. The Visual Neurosciences. Boston, MA: MIT Press (2004). p. 1449-65.

    3. Straube A, Büttner U. Neuro-Ophthalmology: Neuronal Control of Eye Movements. Basel: Karger Publishers (2007).

    4. Horn AK, Leigh RJ. The anatomy and physiology of the ocular motor system. Handb Clin Neurol (2011) 102:21-69. doi:10.1016/B978-0-444-52903-9. 00008-X

    5. Cui DM, Yan YJ, Lynch JC. Pursuit subregion of the frontal eye field projects to the caudate nucleus in monkeys. J Neurophysiol (2003) 89:2678-84. doi:10. 1152/jn.00501.2002

    6. McDowell JE, Dyckman KA, Austin BP, Clementz BA. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn (2008) 68:255-70. doi:10.1016/j.bandc.2008.08.016

    7. Shires J, Joshi S, Basso MA. Shedding new light on the role of the basal gangliasuperior colliculus pathway in eye movements. Curr Opin Neurobiol (2010) 20:717-25. doi:10.1016/j.conb.2010.08.008

    8. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, White LE, editors. Neuroscience. 2nd ed. Sunderland, MA: Sinauer Associates (2001).

    9. Linzenbold W, Lindig T, Himmelbach M. Functional neuroimaging of the oculomotor brainstem network in humans. Neuroimage (2011) 57:1116-23. doi:10.1016/j.neuroimage.2011.05.052

    10. Alvarez TL, Alkan Y, Gohel S, Douglas Ward B, Biswal BB. Functional anatomy of predictive vergence and saccade eye movements in humans: a functional MRI investigation. Vision Res (2010) 50(21):2163-75. doi:10.1016/j.visres.2010. 08.018

  • Metrics
    No metrics available
Share - Bookmark