Beyond the obvious : mental representations and elementary arithmetic

0044 English OPEN
Pitta, Demetra;
  • Subject: LB1501

This study seeks to answer the question: "What kinds of mental representation do children\ud project and how may these be associated with their level of achievement in elementary\ud arithmetic?". Drawing upon theories offering some explanation for the way in which\ud ar... View more
  • References (82)
    82 references, page 1 of 9

    4.3.1 The Disguised Nature of Mental Representations ......................... 70 4.3.2 Metacognition ................................................................. 71 4.3.3 Information Processing ......................................................

    4.3.4 Importing from Psychology ................................................. 72 4.3.5 A Phenomenographical Orientation ...................... • .................. 74 4.3.6 Semi-Clinical Interviewing ............................ . . .................. -77-57 4.3.7 Reliability and Validity .........................................................

    4.4.1 Refining the Approach .......................................................

    4.4.2 Evoking Mental Representations ............................................ 81 4.4.3 Developing the Verbal Item Bank .......................................... 82 4.4.4 Presenting the Verbal Item Bank ......................... 84 4.4.5 The Visual Item Bank ....................................................... 86 4.4.6 Presenting the Visual Item Bank ........................................... 88 4.4.7 The Numerical Components_ ............................................ 89 Jaworski, B. (1988). 'Is" versus "seeing as": Constructivism and the mathematics classroom'. In D. Pimm (Ed.), Mathematics, Teachers and Children. London: Hodder and Staughton.

    Johanssen, B., Marton, F. & Svensson, L. (1985). An approach to describing learning as change between qualitatively different conceptions. In A. L. Pines & L.H.T.West (Eds), Cognitive structure and conceptual change. New York: Academic Press.

    Johnson-Laird, P. N. (1983). Mental models. Cambridge: Cambridge University Press.

    Kamii, C. (1985). Young children reinvent arithmetic. New York: Teachers College Press.

    Kaput, J. (1992). Technology in Mathematics Education. In D.A. Grouws (Ed.), Handbook of Research in Mathematics Teaching and Learning,.pp. 515-516 Macmillan: New York

    Katona, G. (1967). Organising and memorisizing: Studies in the psychology of learning and teaching. New York: Hafner.

    Kilpatrick, J. (1992). A history of research in mathematics eduction. In D.A. Grouws (Ed.), Handbook of research in mathematics education: A Project of the National Council of Teachers of Mathematics. Macmillan: New York.

  • Metrics
Share - Bookmark