Response of the Amazon carbon balance to the 2010 drought derived with CarbonTracker South America

Article English OPEN
van der Laan-Luijkx, IT ; van der Velde, IR ; Krol, MC ; Gatti, LV ; Miller, JB ; Gloor, EU ; van Leeuwen, TT ; Kaiser, JW ; Wiedinmyer, C ; Basu, S ; Clerbaux, C ; Peters, W (2015)
  • Publisher: American Geophysical Union (AGU)

Two major droughts in the past decade had large impacts on carbon exchange in the Amazon. Recent analysis of vertical profile measurements of atmospheric CO2 and CO by Gatti et al. [2014] suggests that the 2010 drought turned the normally close-to-neutral annual Amazon carbon balance into a substantial source of nearly 0.5 PgC/yr, revealing a strong drought response. In this study, we revisit this hypothesis and interpret not only the same CO2/CO vertical profile measurements, but also additional constraints on carbon exchange such as satellite observations of CO, burned area, and fire hotspots. The results from our CarbonTracker South America data assimilation system suggest that carbon uptake by vegetation was indeed reduced in 2010, but that the magnitude of the decrease strongly depends on the estimated 2010 and 2011 biomass burning emissions. We have used fire products based on burned area (GFED4), satellite-observed CO columns (IASI), fire radiative power (GFASv1) and fire hotspots (FINNv1), and found an increase in biomass burning emissions in 2010 compared to 2011 of 0.16 to 0.24 PgC/yr. We derived a decrease of biospheric uptake ranging from 0.08 to 0.26 PgC/yr, with the range determined from a set of alternative inversions using different biomass burning estimates. Our numerical analysis of the 2010 Amazon drought results in a total reduction of carbon uptake of 0.24 to 0.50 PgC/yr and turns the balance from carbon sink to source. Our findings support the suggestion that the hydrological cycle will be an important driver of future changes in Amazonian carbon exchange.
  • References (11)
    11 references, page 1 of 2

    Akagi, S. K., R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid, T. Karl, J. D. Crounse, and P. O. Wennberg (2011), Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11(9), 4039-4072, doi:10.5194/acp-11-4039-2011.

    Andreae, M. O., and P. Merlet (2001), Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15(4), 955-966, doi:10.1029/2000GB001382.

    Araujo, A. C., et al. (2002), Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site, J. Geophys. Res., 107(D20), 8090, doi:10.1029/2001JD000676.

    Babenhauserheide, A., S. Basu, S. Houweling, W. Peters, and A. Butz (2015), Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions, Atmos. Chem. Phys. Discuss., 15, 8883-8932, doi:10.5194/acpd-15-8883-2015.

    Baker, D. F., et al. (2006), TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003, Global Biogeochem. Cycles, 20, GB1002, doi:10.1029/2004GB002439.

    Booth, B. B. B., C. D. Jones, M. Collins, I. J. Totterdell, P. M. Cox, S. Sitch, C. Huntingford, R. A. Betts, G. R. Harris, and J. Lloyd (2012), High sensitivity of future global warming to land carbon cycle processes, Environ. Res. Lett., 7(2), 024002, doi:10.1088/1748-9326/7/2/024002.

    Ciais, P., et al. (2013), Carbon and other biogeochemical cycles, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., pp. 465-570, Cambridge Univ. Press, Cambridge, U. K., and New York.

    Clerbaux, C., et al. (2009), Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9(16), 6041-6054, doi:10.5194/acp-9-6041-2009.

    Conway, T. J., P. P. Tans, L. S. Waterman, K. W. Thoning, D. R. Kitzis, K. A. Masarie, and N. Zhang (1994), Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network, J. Geophys. Res., 99(D11), 22,831-22,855, doi:10.1029/94JD01951.

    Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke (2013), Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability, Nature, 494, 341-344, doi:10.1038/nature11882.

  • Related Research Results (2)
  • Similar Research Results (2)
  • Metrics
    No metrics available