publication . Article . 2008

catalysis by microporous phthalocyanine and porphyrin network polymers

Mackintosh, H. J.; Budd, P. M.; McKeown, Neil B.;
Open Access
  • Published: 01 Jan 2008 Journal: J. Mater. Chem., volume 18, pages 573-578 (issn: 0959-9428, eissn: 1364-5501, Copyright policy)
  • Publisher: Royal Society of Chemistry (RSC)
  • Country: United Kingdom
Cobalt phthalocyanine and iron porphyrin network polymers of intrinsic microporosity (network-PIMs) were prepared and their performance as heterogeneous catalysts compared with that of low molar mass analogues. Spiro-linked Co phthalocyanine network-PIMs prepared from preformed chlorinated phthalocyanines showed lower surface areas and lower catalytic activity than those prepared by a phthalocyanine-forming reaction from a rigid precursor incorporating a spiro-centre. However, all the phthalocyanine network-PIMs were much more effective catalysts than low molar mass Co phthalocyanine for the decomposition of hydrogen peroxide, the oxidation of cyclohexene and th...
Medical Subject Headings: hemic and lymphatic diseases
free text keywords: Materials Chemistry, General Chemistry, Catalysis, Cyclohexene, chemistry.chemical_compound, chemistry, Polymer, chemistry.chemical_classification, Phthalocyanine, Hydroquinone, Inorganic chemistry, Organic chemistry, Photochemistry, Molar mass, Porphyrin, Microporous material, QD
Related Organizations
29 references, page 1 of 2

1 J. E. Falk and K. M. Smith, Porphyrins and Metalloporphyrins, Elsevier, Amsterdam, 1975.

2 D. Dolphin, The Porphyrins, Academic, New York, 1979.

3 B. Grimm, R. J. Porra, W. Ruediger and H. Scheer, Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, Springer, Dordrecht, 2006.

4 N. B. McKeown, Phthalocyanine Materials: Synthesis, Structure and Function, Cambridge University Press, Cambridge, 1998.

5 W. M. Brouwer, P. A. M. Traa, T. J. W. De Weerd, P. Piet and A. L. German, Angew. Makromol. Chem., 1984, 128, 133-147.

6 A. Leitao, C. Costa and A. Rodrigues, Chem. Eng. Sci., 1987, 42, 2291-2299.

7 H. Fischer, G. Schulz-Ekloff, T. Buck, D. Woehrle, M. Vassileva and A. Andreev, Langmuir, 1992, 8, 2720-2723.

8 E. Paez-Mozo, N. Gabriunas, R. Maggi, D. Acosta, P. Ruiz and B. Delmon, J. Mol. Catal., 1994, 91, 251-258.

9 K. J. Balkus, Jr., M. Eissa and R. Levado, J. Am. Chem. Soc., 1995, 117, 10753-10754.

10 P. Karandikar, A. J. Chandwadkar, M. Agashe, N. S. Ramgir and S. Sivasanker, Appl. Catal., A, 2006, 297, 220-230.

11 H. Shirai, A. Maruyama, K. Kobayashi, N. Hojo and K. Urushido, J. Polym. Sci., Polym. Lett. Ed., 1979, 17, 661-666.

12 M. Kimura, T. Nishigaki, T. Koyama, K. Hanabusa and H. Shirai, Macromol. Chem. Phys., 1994, 195, 3499-3508.

13 N. B. McKeown, S. Makhseed and P. M. Budd, Chem. Commun., 2002, 2780-2781.

14 N. B. McKeown, S. Hanif, K. Msayib, C. E. Tattershall and P. M. Budd, Chem. Commun., 2002, 2782-2783.

15 D. H. Everett, Pure Appl. Chem., 1972, 31, 577-638.

29 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue