Universal scaling of the logarithmic negativity in massive quantum field theory

Article, Preprint English OPEN
Blondeau-Fournier, O. ; Castro Alvaredo, O. ; Doyon, B. (2016)
  • Publisher: IOP Publishing Ltd
  • Related identifiers: doi: 10.1088/1751-8113/49/12/125401
  • Subject: Mathematical Physics | Physics and Astronomy(all) | Condensed Matter - Strongly Correlated Electrons | conformal field theory | logarithmic negativity | QA | Statistical and Nonlinear Physics | /dk/atira/pure/subjectarea/asjc/3100 | entanglement measures in many-body quantum systems | /dk/atira/pure/subjectarea/asjc/3100/3109 | Condensed Matter - Statistical Mechanics | quantum field theory in 1+1 dimensions | Statistics and Probability | High Energy Physics - Theory | Modelling and Simulation | /dk/atira/pure/subjectarea/asjc/2600/2613 | /dk/atira/pure/subjectarea/asjc/2600/2610 | /dk/atira/pure/subjectarea/asjc/2600/2611

We consider the logarithmic negativity, a measure of bipartite entanglement, in a general unitary 1+1-dimensional massive quantum field theory, not necessarily integrable. We compute the negativity between a finite region of length $r$ and an adjacent semi-infinite region, and that between two semi-infinite regions separated by a distance $r$. We show that the former saturates to a finite value, and that the latter tends to zero, as $r\rightarrow\infty$. We show that in both cases, the leading corrections are exponential decays in $r$ (described by modified Bessel functions) that are solely controlled by the mass spectrum of the model, independently of its scattering matrix. This implies that, like the entanglement entropy, the logarithmic negativity displays a very high level of universality, allowing one to extract information about the mass spectrum. Further, a study of sub-leading terms shows that, unlike the entanglement entropy, a large-$r$ analysis of the negativity allows for the detection of bound states.
  • References (44)
    44 references, page 1 of 5

    [1] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A53, 2046{2052 (1996).

    [2] A. Osterloh, L. Amico, G. Falci, and R. Fazio, Scaling of entanglement close to a quantum phase transition, Nature 416, 608{610 (2002).

    [3] T. J. Osborne and M. A. Nielsen, Entanglement in a simple quantum phase transition, Phys. Rev. A66, 032110 (2002).

    [4] H. Barnum, E. Knill, G. Ortiz, R. Somma, and L. Viola, A subsystem-indepent generalization of entanglement, Phys. Rev. Lett. 92, 107902 (2004).

    [5] F. Verstraete, M. A. Martin-Delgado, and J. I. Cirac, Diverging entanglement length in gapped quantum spin systems, Phys. Rev. Lett. 92, 087201 (2004).

    [6] G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A65, 032314 (2001).

    [7] M. Plenio, Logarithmic negativity: a full entanglement monotone that is not convex, Phys. Rev. Lett. 95, 090503 (2005); Erratum Phys. Rev. Lett. 95, 119902 (2005)

    [8] J. Calabrese, P. Cardy and B. Doyon, Entanglement entropy in extended quantum systems, J. Phys. A42, 500301 (2009).

    [9] P. Calabrese, J. Cardy, and E. Tonni, Entanglement Negativity in Quantum Field Theory, Phys. Rev. Lett. 109, 130502 (2012).

    [10] P. Calabrese, J. Cardy, and E. Tonni, Entanglement negativity in extended systems: A eld theoretical approach, J. Stat. Mech. 1302, P02008 (2013).

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark