Share  Bookmark

 Download from




[1] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A53, 2046{2052 (1996).
[2] A. Osterloh, L. Amico, G. Falci, and R. Fazio, Scaling of entanglement close to a quantum phase transition, Nature 416, 608{610 (2002).
[3] T. J. Osborne and M. A. Nielsen, Entanglement in a simple quantum phase transition, Phys. Rev. A66, 032110 (2002).
[4] H. Barnum, E. Knill, G. Ortiz, R. Somma, and L. Viola, A subsystemindepent generalization of entanglement, Phys. Rev. Lett. 92, 107902 (2004).
[5] F. Verstraete, M. A. MartinDelgado, and J. I. Cirac, Diverging entanglement length in gapped quantum spin systems, Phys. Rev. Lett. 92, 087201 (2004).
[6] G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A65, 032314 (2001).
[7] M. Plenio, Logarithmic negativity: a full entanglement monotone that is not convex, Phys. Rev. Lett. 95, 090503 (2005); Erratum Phys. Rev. Lett. 95, 119902 (2005)
[8] J. Calabrese, P. Cardy and B. Doyon, Entanglement entropy in extended quantum systems, J. Phys. A42, 500301 (2009).
[9] P. Calabrese, J. Cardy, and E. Tonni, Entanglement Negativity in Quantum Field Theory, Phys. Rev. Lett. 109, 130502 (2012).
[10] P. Calabrese, J. Cardy, and E. Tonni, Entanglement negativity in extended systems: A eld theoretical approach, J. Stat. Mech. 1302, P02008 (2013).