A randomized version of the Littlewood Conjecture

Book, Preprint English OPEN
Haynes, Alan ; Koivusalo, Henna (2016)
  • Subject: Mathematics - Number Theory | 11J13, 60D05
    arxiv: Mathematics::Number Theory

The Littlewood Conjecture in Diophantine approximation can be thought of as a problem about covering the plane by a union of hyperbolas centered at rational points. In this paper we consider the problem of translating the center of each hyperbola by a random amount which depends on the denominator of the corresponding rational. Using a randomized covering argument we prove that, not only is this randomized version of the Littlewood Conjecture true for almost all choices of centers, an even stronger statement with an extra factor of a logarithm also holds.
  • References (7)

    n log(n + 1) [6] A. Dvoretzky: On covering a circle by randomly placed arcs, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 199-203.

    [7] A. Haynes, S. Munday: Diophantine approximation and coloring, Amer. Math. Monthly 122 (2015), no. 6, 567-580.

    [8] V. Jarn´ık: Zur metrischen Theorie der diophantischen Approximationen, Prace Mat.-Fiz. (19281929), 91106.

    [9] A. Khintchine: Zur metrischen Theorie der diophantischen Approximationen, (German) Math. Z. 24 (1926), no. 1, 706-714.

    [10] B. de Mathan, O. Teuli´e: Probl`emes diophantiens simultan´es, (French) Monatsh. Math. 143 (2004), no. 3, 229-245.

    [11] L. G. Peck: Simultaneous rational approximations to algebraic numbers, Bull. Amer. Math. Soc. 67 1961 197-201.

    [12] P. Gallagher: Metric simultaneous diophantine approximation, J. London Math. Soc. 37 (1962) 387-390.

  • Metrics
    No metrics available
Share - Bookmark