Normal correlation : an objective Bayesian approach

Book English OPEN
Juárez, Miguel A.;
(2005)
  • Publisher: University of Warwick. Centre for Research in Statistical Methodology
  • Subject: QA

In this paper we give a decision-theoretic oriented, objective Bayesian answer to the problems\ud of point estimating and sharp hypothesis testing about the correlation coefficient of a bivariate\ud Normal population. Under this view both problems are deemed closely rel... View more
  • References (20)
    20 references, page 1 of 2

    Bartlett, M. (1957). A comment on D. V. Lindley's statistical paradox, Biometrika, 44, 533-534.

    Bayarri, M. J. (1981). Inferencia bayesiana sobre el coeficiente de correlación en una población normal bivariante, Trabajos de Estadística e Investigación Operativa, 32 (3), 18-31.

    Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors, Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford: University Press, pp. 35-60.

    Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison, Model Selection, Lecture Notes, vol. 38 (P. Lahiri, ed.), Institute of Mathematical Statistics, pp. 135-207. (with discussion).

    Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference, J. Roy. Statist. Soc. B, 41 (2), 113-147.

    Bernardo, J. M. and Juárez, M. A. (2003). Intrinsic estimation, Bayesian Statistics 7 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.), Oxford: University Press, pp. 465-475.

    Bernardo, J. M. and Rueda, R. (2002). Bayesian hypothesis testing: A reference approach, International Statistical Review, 70, 351-372.

    Bernardo, J. M. and Smith, A. F. (1994). Bayesian Theory, Chichester: John Wiley.

    Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population, Biometrika, 10, 507-521.

    Gutierrez-Peña, E. (1992). Expected logarithmic divergence for exponential families, Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford university press, pp. 669-674.

  • Metrics
Share - Bookmark