Spherical and hyperbolic embeddings of data

Article English OPEN
Wilson, Richard Charles; Hancock, Edwin R; Pekalska, Elzbieta; Duin, Robert P. W.;
(2014)
  • Subject:
    arxiv: Mathematics::Differential Geometry
    acm: ComputingMethodologies_COMPUTERGRAPHICS | ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION

Many computer vision and pattern recognition problems may be posed as the analysis of a set of {\bf dissimilarities} between objects. For many types of data, these dissimilarities are not Euclidean (i.e. they do not represent the distances between points in a Euclidean ... View more
  • References (35)
    35 references, page 1 of 4

    [1] G. Andreu, A. Crespo, and J.M. Valiente. Selecting the toroidal selforganizing feature maps (tsofm) best organized to object recognition. In ICNN'97, pages 1341-1346, 1997.

    [2] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373- 1396, 2003.

    [3] M. Brand. Charting a manifold. In Advances in Neural Information Processing Systems 15: Proceedings of the 2003 Conference (NIPS), pages 961-968. MIT Press., 2003.

    [4] A.M. Bronstein, M.M. Bronstein, and R. Kimmel. Expression-invariant face recognition via spherical embedding. In Image Processing, 2005. ICIP 2005. IEEE International Conference on, volume 3, pages III756-9, 2005.

    [5] H. Bunke and U. Buhler. Applications of approximate string matching to 2d shape recognition. Pattern Recognition, 26:1797-1812, 1993.

    [6] M. A. A. Cox and T. F. Cox. Multidimensional scaling. In Handbook of Data Visualization, pages 315-347. Springer Handbooks of Computational Statistics, 2008.

    [7] T. F. Cox and M. A. A. Cox. Multidimensional scaling on a sphere. Communications in Statistics - Theory and Methods, 20(9):2943-2953, 1991.

    [8] M. Kitsak A. Vahdat M. Boguna D. Krioukov, F. Papadopoulos. Hyperbolic geometry of complex networks. Physical Review E, 82:036106, 2010.

    [9] J. De Leeuw. Applications of convex analysis to multidimensional scaling. In J. R. Barra, F. Brodeau, G. Romier, and B. van Cutsem, editors, Recent Developments in Statistics, pages 133-145, 1977.

    [10] J. De Leeuw and W. J. Heiser. Multidimensional scaling with restrictions on the configuration. In P. R. Krishnaiah, editor, Multivariate Analysis, pages 501-522, 1980.

  • Metrics
Share - Bookmark