Share  Bookmark

 Download from



[1] L. Anderson, Y. He and A. Lukas, \Heterotic Compacti cation, An Algorithmic Approach," JHEP 0707, 049 (2007) [arXiv:hepth/0702210v2].
[2] L. Anderson, Y. He and A. Lukas, \Monads Bundles in Heterotic String Compacti cations," JHEP 0807, 104 (2008) [arXiv:hepth/0805.2875v1].
[19] L. Anderson, J. Gray, Y. H. He and A. Lukas, In preparation.
[20] M. Kreuzer, H. Skarke, \On the classi cation of relfexive polyhedra," Commun. Math. Phys. 185, 495508 (1997) [arXiv:hepth/9512204].
[21] M. Kreuzer and H. Skarke, \Complete Classi cation of Re exive Polyhedra in Fourdimensions," Adv.Theor.Math.Phys.4 (2002) 1209 [arXiv:hepth/0002240].
[22] M. Kreuzer, H. Skarke, \Re exive polyhedra, weights and toric CalabiYau brations," Rev. Math. Phys. 14, 343374 (2002) [arXiv:math/0001106].
[23] M. Kreuzer, \Strings on CalabiYau spaces and toric geometry," Nucl. Phys. Proc. Suppl. 102, 8793 (2001) [arXiv:hepth/0103243].
[24] M. Kreuzer, \Toric geometry and CalabiYau compacti cations," [arXiv:hepth/0612307].
[25] M. Kreuzer, E. Riegler, D. Sahakyan, \Toric complete intersections and weighted projective space," J. Geom. Phys. 46, 159173 (2003).
[26] M. Kreuzer, B. Nill, \Classi cation of toric Fano 5folds," [arXiv:math/0702890], relevant data fetched at http://hep.itp.tuwien.ac.at/ kreuzer/math/0702890/ToricFano.4d.gz.