Share  Bookmark

 Download from



[1] C. M. Bender and S. Boettcher, Real Spectra in NonHermitian Hamiltonians Having PT Symmetry, Phys. Rev. Lett. 80, 52435246 (1998).
[2] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. VolatierRavat, V. Aimez, G. A. Siviloglou and D.N. Christodoulides, Observation of PT Symmetry Breaking in Complex Optical Potentials, Phys. Rev. Lett. 103, 093902 (2009).
[3] C. E. Ruter, K. G. Makris, R. ElGanainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of paritytime symmetry in optics, Nat. Phys. 6, 1515 (2010).
[4] K. F. Zhao, M. Schaden and Z. Wu, Enhanced magnetic resonance signal of spinpolarized Rb atoms near surfaces of coated cells, Phys. Rev. A, 81, 042903 (2010).
[5] J. Schindler, A. Li, M. C. Zheng, F. M. Ellis and T. Kottos, Experimental study of active LRC circuits with PT symmetries, Phys. Rev. A, 84, 040101, (2011).
[6] C. M. Bender, Making Sense of NonHermitian Hamiltonians, Rep. Progr. Phys., 70, 9471018 (2007).
[7] A. Mostafazadeh, PseudoHermitian representation of Quantum Mechanics, Int. J. Geom. Methods Mod. Phys. 7, 11911306 (2010).
[8] M. Znojil, ThreeHilbertspace formulation of Quantum Mechanics, SIGMA 5, 001 (2009).
[9] J. DieudonnÂ´e, Quasihermitian operators, Proceedings of the International Symposium on Linear Spaces, Jerusalem 1960, Pergamon, Oxford, 115122 (1961).
[10] F. G. Scholtz, H. B. Geyer, F.J.W. Hahne, Quasihermitian operators in quantum mechanics and the variational principle, Ann. Phys. 213, 74101 (1992).