The Tits alternative for non-spherical Pride groups

Article, Preprint English OPEN
Kopteva, Natalia ; Williams, Gerald (2006)
  • Publisher: Oxford University Press
  • Related identifiers: doi: 10.1112/blms/bdm092
  • Subject: QA | Primary: 20E05 | Mathematics - Group Theory | Secondary: 20E07, 20F05, 20F06
    arxiv: Mathematics::Group Theory

Pride groups, or ``groups given by presentations in which each defining relator involves at most two types of generators'', include Coxeter groups, Artin groups, triangles of groups, and Vinberg's groups defined by periodic paired relations. We show that every non-spherical Pride group that is not a triangle of groups satisfies the Tits alternative.
  • References (16)
    16 references, page 1 of 2

    [1] M. Bestvina, M. Feighn and M. Handel, The Tits alternative for Out(Fn). I. Dynamics of exponentially-growing automorphisms, Ann. of Math. (2) 151 (2000), no. 2, 517-623.

    [2] M. Bestvina, M. Feighn and M. Handel, The Tits alternative for Out(Fn). II. A Kolchin type theorem, Ann. of Math. (2) 161 (2005), no. 1, 1-59.

    [3] J. M. Corson, Amalgamated sums of groups, Proc. Edinburgh Math. Soc. (2) 39 (1996), no. 3, 561-570.

    [4] M. Edjvet, G. Rosenberger, M. Stille and R. M. Thomas, On certain finite generalized tetrahedron groups, Computational and geometric aspects of modern algebra (Edinburgh, 1998), 54-65, London Math. Soc. Lecture Note Ser., 275, Cambridge Univ. Press, Cambridge, 2000.

    [5] M. Gromov, Hyperbolic groups, Essays in group theory, 75-263, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987.

    [6] J. Howie and N. Kopteva, The Tits alternative for generalized tetrahedron groups, J. Group Theory, 9 (2006), no. 2, 173-189.

    [7] N. V. Ivanov, Algebraic properties of the Teichmu¨ller modular group, (Russian) Dokl. Akad. Nauk SSSR 275 (1984), no. 4, 786-789.

    [8] J. Meier, Geometric invariants for Artin groups, Proc. London Math. Soc. (3) 74 (1997), no. 1, 151-173.

    [9] J. McCarthy, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985), no. 2, 583-612.

    [10] G. Noskov and E. B. Vinberg, Strong Tits alternative for subgroups of Coxeter groups, J. Lie Theory 12 (2002), no. 1, 259-264.

  • Metrics
    No metrics available
Share - Bookmark