A non-oscillatory multi-moment finite volume scheme with boundary gradient switching

Article English OPEN
Deng, Xi; Sun, Ziyao; Xie, Bin; Yokoi, Kensuke; Chen, Chungang; Xiao, Feng;
(2017)

In this work we propose a new formulation for high-order multi-moment constrained finite volume (MCV) method. In the one-dimensional building-block scheme, three local degrees of freedom (DOFs) are equidistantly defined within a grid cell. Two candidate polynomials for ... View more
  • References (30)
    30 references, page 1 of 3

    1. Chen, C.G., Xiao, F.: An adaptive multimoment global model on a cubed sphere. Mon. Wea. Rev. 139, 523-548 (2011)

    2. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. J. Comput. Phys. 84, 90-113 (1989)

    3. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comput. 52, 411-435 (1989)

    4. Fan, P., Shen, Y., Tian, B., Yang, C.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269, 329-354 (2014)

    5. Godlewski, E., Raviart, P.A.: Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol. 118. Springer-Verlag New York (1996)

    6. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231-303 (1987)

    7. Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods: Algorithms, analysis and applications. Springer-Verlag New York (2008)

    8. Huang, C.S., Xiao, F., Arbogast, T.: Fifth order multi-moment weno schemes for hyperbolic conservation laws. J. Sci. Comput. 64(2), 477-507 (2015)

    9. Ii, S., Xiao, F.: CIP/multi-moment finite volume method for Euler equations, a semiLagrangian characteristic formulation. J. Comput. Phys. 222, 849-871 (2007)

    10. Ii, S., Xiao, F.: High order multi-moment constrained finite volume method. Part I: Basic formulation. J. Comput. Phys. 228, 3669-3707 (2009)

  • Similar Research Results (5)
  • Metrics
Share - Bookmark