publication . Article . 2015

A review of parallel computing for large-scale remote sensing image mosaicking

Chen, Lajiao; Ma, Yan; Liu, Peng; Wei, Jingbo; Jie, Wei; He, Jijun;
Open Access English
  • Published: 01 Jul 2015
  • Publisher: Springer
Abstract
Interest in image mosaicking has been spurred by a wide variety of research and management needs. However, for large-scale applications, remote sensing image mosaicking usually requires significant computational capabilities. Several studies have attempted to apply parallel computing to improve image mosaicking algorithms and to speed up calculation process. The state of the art of this field has not yet been summarized, which is, however, essential for a better understanding and for further research of image mosaicking parallelism on a large scale. This paper provides a perspective on the current state of image mosaicking parallelization for large scale applica...
Subjects
acm: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
free text keywords: computer_science
Related Organizations
60 references, page 1 of 4

1. G. Moik, Digital processing of remotely sensed images, NASA (1980)

2. K. Jan, R. Andreas, C. R. Volker, K. Tobias, K. Jacek, H. Patrick, Land cover mapping of large areas using chain classi cation of neighboring Landsat satellite images, Int. J. Remote. Sens., 113, 957C964 (2009)

3. S. E. Franklin, and M. A. Wulder, Remote sensing methods in medium spatial resolution satellite data land cover classi-cation of large areas, Prog. Phys. Geog., 26, 173-205 (2002)

4. J. Cihlar, Land-Cover mapping of large areas from satellites: Status and research priorities. Int. J. Remote. Sens., 21, 1093-1114 (2000)

5. P. Coppin, I. Jonckheere, K. Nackaerts, B. Muys and E. Lambin , Digital change detection methods in ecosystem monitoring: a review, Int. J. Remote. Sens., 25, 1565-1596 (2004).

6. T. Hame, A. Salli, K. Andersson, and A. Lohi , A new methodology for the estimation of biomass of conifer dominated boreal forest using NOAA AVHRR data, Int. J. Remote. Sens., 18, 3211-3243 (1997) [OpenAIRE]

7. G. De Grandi, J. P. Malingreau, M. Leysen, The ERS-1 Central Africa Mosaic: a new perspective in radar remote sensing for the global monitoring of vegetation, IEEE T. Geosci. Remote., 37, 1730-1746 (1997)

8. W. B. Cohen, T. K. Maiersperger, T. A. Spies, and D. R. Oetter, Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data, Int. J. Remote. Sens., 22, 2279-2310 (2001)

9. K. Kim, K. C. Jezek, and H. Liu, Orthorecti ed image mosaic of Antarctica from 1963 Argon satellite photography: image processing and glaciological applications, Int. J. Remote. Sens., 28, 5357-5373 (2007)

10. R. H. Merson, An AVHRR mosaic image of Antarctic, Int. J. Remote. Sens., 10, 669-674 (1989)

11. K. C. Jezek, Flow variations of the Antarctic Ice Sheet from comparison of modern and historical satellite data, In Geoscience and Remote Sensing Symposium Proceedings, IGARSS, Seattle, WA (New York: IEEE International), 4, 2240-2242 (1998)

12. A. Rosenqvist, M. Shimada, B. Chapman, A. Freeman, G. De Grandi, S. Saatchi and Y. Rauste, The Global Rain Forest Mapping project - A review, Int. J. Remote. Sens., 21, 1375-1387 (2000) [OpenAIRE]

13. L. Shusun, Summer environmental mapping potential of a large-scale ERS-1 SAR mosaic of the state of Alaska, Int. J. Remote. Sens., 20, 387-401 (1999)

14. C. G. Homer, R. D. Ramsey, T. C. Edwards, and A. Falconer, Landscape cover-type modeling using a multi-scene Thematic Mapper mosaic, Photogramm. Eng. Rem. S., 63, 59-67 (1997)

15. M. A. Wulder, J. C. White, S. N. Goward, J. G. Masek, J. R. Irons, M. Herold, W. B. Cohen, T. R. Loveland, C. E. Woodcock, Landsat continuity: Issues and opportunities for land cover monitoring, Remote Sens. Environ., 112, 955-969 (2008)

60 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue