A remark on a paper by Evans and Harris on the point spectra of Dirac operators

Article English OPEN
Schmidt, Karl Michael (2001)

This paper presents a su± cient condition for a one-dimensional Dirac operator with a\ud potential tending to in¯nity at in¯nity to have no eigenvalues. It also provides a\ud quick proof (and suggests variations) of a related criterion given by Evans and Harris.
  • References (17)
    17 references, page 1 of 2

    L. H. Erbe and Q. K. Kong. Stieltjes integral inequalities of Gronwall type and applications. Annli Mat. Pura Appl. 157 (1990), 77{97.

    A. Erd¶elyi. Note on a paper by Titchmarsh. Q. J. Math. Oxf. 14 (1963), 147{152.

    W. D. Evans and B. J. Harris. Bounds for the point spectra of separated Dirac systems. Proc. R. Soc. Edinb. A 88 (1981), 1{15.

    J. V. Herod. A Gronwall inequality for linear Stieltjes integrals. Proc. Am. Math. Soc. 23 (1969), 34{36.

    D. B. Hinton. A Stieltjes{Volterra integral equation theory. Can. J. Math. 18 (1966), 314{ 331.

    A. B. Mingarelli. On a Stieltjes version of Gronwall' s inequality. Proc. Am. Math. Soc. 82 (1981), 249{252.

    M. S. Plesset. The Dirac electron in simple ¯elds. Phys. Rev. 41 (1932), 278{290.

    B. W. Roos and W. C. Sangren. Spectra for a pair of singular ¯rst order di® erential equations. Proc. Am. Math. Soc. 12 (1961), 468{476.

    M. E. Rose and R. R. Newton. Properties of Dirac wave functions in a central ¯eld. Phys. Rev. 82 (1951), 470{477.

    W. W. Schmaedeke and G. R. Sell. The Gronwall inequality for modi¯ed Stieltjes integrals. Proc. Am. Math. Soc. 19 (1968), 1217{1222.

  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    10
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Online Research @ Cardiff - IRUS-UK 0 10
Share - Bookmark