Geometrically designed, variable knot regression splines: variation diminish optimality of knots

Book English OPEN
Kaishev, V. K.; Dimitrova, D. S.; Haberman, S.; Verrall, R. J.;
  • Publisher: Faculty of Actuarial Science & Insurance, City University London
  • Subject: HG

A new method for Computer Aided Geometric Design of variable knot regression splines, named GeDS, has recently been introduced by Kaishev et al. (2006). The method utilizes the close geometric relationship between a spline regression function and its control polygon, wi... View more
  • References (15)
    15 references, page 1 of 2

    Agarwal, G. G. and Studden, W. J. (1980). Asymptotic integrated mean square error using least squares and bias minimizing splines. Ann. Statist., 8, 1307-1325.

    Biller, C. (2000). Adaptive Bayesian regression splines in semiparametric generalized linear models. J. Comput. and Graph. Stat., 9, 122-140.

    De Boor, C. (2001). A practical Guide to Splines, Revised Edition, New York: Springer.

    De Boor, C. and Rice, J. (1968). Least squares cubic spline approximation II. Variable knots. Comp. Sci.Dpt. Technical Report 21, Purdue Univrsity, West Laffayet, Indiana.

    Denison, D., Mallick, B., and Smith, A. (1998). Automatic Bayesian curve fitting, J. R. Statist. Soc., B, 60, 333-350.

    Donoho, D. and Johnstone, I (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81, 425-455.

    Lee, T. C. M. (2000). Regression spline smoothing using the minimum description length principle. Stat. & Prob. Letters, 48, 71-82.

    Lindstrom, M. J. (1999). Penalized estimation of free-knot splines. J. Comput. and Graph. Stat., 8, 2, 333-352.

    Luo, Z., and Wahba, G. (1997). Hybrid adaptive splines. J. Am. Statist. Ass., 92, 107-115.

    Marx, B. D. and Eilers, P. H.C. (1996). Flexible Smoothing with B-splines and Penalties. Stat. Science, 11, 2, 89-121.

  • Metrics
Share - Bookmark