Entanglement Entropy of Non Unitary Conformal Field Theory

Article, Preprint English OPEN
Bianchini, Davide ; Castro-Alvaredo, Olalla A. ; Doyon, Benjamin ; Levi, Emanuele ; Ravanini, Francesco (2014)
  • Publisher: IOP Publishing
  • Related identifiers: doi: 10.1088/1751-8113/48/4/04FT01
  • Subject: QA | QC | Condensed Matter - Statistical Mechanics | High Energy Physics - Theory

In this letter we show that the R\'enyi entanglement entropy of a region of large size $\ell$ in a one-dimensional critical model whose ground state breaks conformal invariance (such as in those described by non-unitary conformal field theories), behaves as $S_n \sim \frac{c_{\mathrm{eff}}(n+1)}{6n} \log \ell$, where $c_{\mathrm{eff}}=c-24\Delta>0$ is the effective central charge, $c$ (which may be negative) is the central charge of the conformal field theory and $\Delta\neq 0$ is the lowest holomorphic conformal dimension in the theory. We also obtain results for models with boundaries, and with a large but finite correlation length, and we show that if the lowest conformal eigenspace is logarithmic ($L_0 = \Delta I + N$ with $N$ nilpotent), then there is an additional term proportional to $\log(\log \ell)$. These results generalize the well known expressions for unitary models. We provide a general proof, and report on numerical evidence for a non-unitary spin chain and an analytical computation using the corner transfer matrix method for a non-unitary lattice model. We use a new algebraic technique for studying the branching that arises within the replica approach, and find a new expression for the entanglement entropy in terms of correlation functions of twist fields for non-unitary models.
  • References (56)
    56 references, page 1 of 6

    [1] S.R. White, Phys. Rev. Lett. 69, 2863 (1992).

    [2] G. Vidal, Phys. Rev. Lett. 101, 110501 (2008).

    [3] C. H. Bennett, H.J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A53, 2046 (1996).

    [4] D. Jonathan and M.B. Plenio, Phys. Rev. Lett. 83, 3566 (1999).

    [5] M.A. Nielsen, Phys. Rev. Lett. 83, 436 (1999); M.A. Nielsen; S. Turgut, J. Phys. A40 12185 (2007); M. Klimesh, Proc. 2004 International Symposium on Information Theory (ISIT 2004), June 27{July 2, 2004, p. 357.

    [7] L. Bombelli, R.K. Koul, J. Lee, and R.D. Sorkin, Phys. Rev. D34, 373 (1986).

    [8] P. Calabrese, J.L. Cardy and B. Doyon (ed), J. Phys. A42 500301 (2009).

    [9] J.P. Go , D.A. Tennant, and S.E. Nagler, Phys. Rev. B52, 15992 (1995); K. Totsuka, Phys. Rev. B57, 3454 (1998); B.C. Watson, V.N. Kotov, M.W. Meisel, D.W. Hall, G.E. Granroth, W.T. Montfrooij, S.E. Nagler, D.A. Jensen, R. Backov, M.A. Petruska, G.E. Fanucci and D.R. Talham, Phys. Rev. Lett. 86, 5168 (2001); B. Thielemann, Ch. Ruegg, H.M. R nnow, A.M. Lauchli, J.-S. Caux, B. Normand, D. Biner, K.W. Kramer, H.-U. Gudel, J. Stahn, K. Habicht, K. Kiefer, M. Boehm, D.F. McMorrow and J. Mesot, Phys. Rev. Lett. 102, 107204 (2009); A.B. Kuklov and B.V. Svistunov, Phys. Rev. Lett. 90, 100401 (2003); L.- M. Duan, E. Demler, and M.D. Lukin, Phys. Rev. Lett. 91, 090402 (2003); J.J. Garc a-Ripoll and J.I. Cirac, Phys.5, 76 (2003); M. Lewenstein, A. Sanpera, V. Ahu nger, B. Damski, A. Sen(De) and U. Send, Adv. Phys. 56, 243 (2007); Y.-A. Chen, S. Nascimbene, M. Aidelsburger, M. Atala, S. Trotzky and I. Bloch, Phys. Rev. Lett. 107, 210405 (2011). T. Kinoshita, T. Wenger and D. S. Weiss, Nature 440, 900 (2006).

    [10] C. Holzhey, F. Larsen and F. Wilczek, Nucl. Phys. B424, 443467 (1994).

    [11] G. Vidal, J.I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003).

  • Metrics
    No metrics available
Share - Bookmark