The lifecycle of the North Atlantic storm track

Article English OPEN
Novak, Lenka ; Ambaum, Maarten H. P. ; Tailleux, Rémi (2015)
  • Publisher: American Meteorological Society
  • Related identifiers: doi: 10.1175/JAS-D-14-0082.1
  • Subject:
    arxiv: Physics::Geophysics | Physics::Atmospheric and Oceanic Physics | Astrophysics::High Energy Astrophysical Phenomena | Physics::Space Physics

The North Atlantic eddy-driven jet exhibits latitudinal variability, with evidence of three preferred latitudinal locations: south, middle and north. Here we examine the drivers of this variability and the variability of the associated storm track. We investigate the changes in the storm track characteristics for the three jet locations, and propose a mechanism by which enhanced storm track activity, as measured by upstream heat flux, is responsible for cyclical downstream latitudinal shifts in the jet. This mechanism is based on a nonlinear oscillator relationship between the enhanced meridional temperature gradient (and thus baroclinicity) and the meridional high-frequency (periods of shorter than 10 days) eddy heat flux. Such oscillations in baroclinicity and heat flux induce variability in eddy anisotropy which is associated with the changes in the dominant type of wave breaking and a different latitudinal deflection of the jet. Our results suggest that high heat flux is conducive to a northward deflection of the jet, whereas low heat flux is conducive to a more zonal jet. This jet deflecting effect was found to operate most prominently downstream of the storm track maximum, while the storm track and the jet remain anchored at a fixed latitudinal location at the beginning of the storm track. These cyclical changes in storm track characteristics can be viewed as different stages of the storm track’s spatio-temporal lifecycle.
  • References (39)
    39 references, page 1 of 4

    Ambaum, M. H. P., and L. Novak, 2014: A nonlinear oscillator describing storm track variability. Quart. J. Roy. Meteor. Soc., 140, 2680-2684, doi:10.1002/qj.2352.

    --, B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14, 3495-3507, doi:10.1175/1520-0442(2001)014,3495:AOONAO.2.0.CO;2.

    Athanasiadis, P., and M. H. P. Ambaum, 2009: Linear contributions of different time scales to teleconnectivity. J. Climate, 22, 3720-3728, doi:10.1175/2009JCLI2707.1.

    --, and --, 2010: Do high-frequency eddies contribute to lowfrequency teleconnection tendencies? J. Atmos. Sci., 67, 419- 433, doi:10.1175/2009JAS3153.1.

    Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121-144, doi:10.1175/1520-0469(2004)061,0121:SVOTNA.2.0.CO;2.

    Blackmon, M. L., Y.-H. Lee, and J. M. Wallace, 1984: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961-980, doi:10.1175/ 1520-0469(1984)041,0961:HSOMHF.2.0.CO;2.

    Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J. Atmos. Sci., 68, 1784-1805, doi:10.1175/2011JAS3674.1.

    Chang, E., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163-2183, doi:10.1175/1520-0442(2002)015,02163: STD.2.0.CO;2.

    Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016-1022, doi:10.1175/ 1520-0450(1979)018,1016:LFIOAT.2.0.CO;2.

    Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901- 924, doi:10.1256/qj.02.76.

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Central Archive at the University of Reading - IRUS-UK 0 44
Share - Bookmark