Towards real-time feature tracking technique using adaptive micro-clusters

Article English OPEN
Shakir Hammoodi, Mahmood; Stahl, Frederic; Tennant, Mark; Badii, Atta;
  • Publisher: BCS Specialist Group on Artifical Intelligence

Data streams are unbounded, sequential data instances that are generated with high velocity. Classifying sequential data instances is a very challenging problem in machine learning with applications in network intrusion detection, financial markets and sensor networks. D... View more
  • References (33)
    33 references, page 1 of 4

    1. Ebbers, M., Abdel-Gayed, A., Budhi, V.B., Dolot, F., Kamat, V., Picone, R., Trevelin, J., et al.: Addressing Data Volume, Velocity, and Variety with IBM InfoSphere Streams V3. 0. IBM Redbooks (2013)

    2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the twenty- rst ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, ACM (2002) 1{16

    3. Kadlec, P., Gabrys, B., Strandt, S.: Data-driven soft sensors in the process industry. Computers & Chemical Engineering 33(4) (2009) 795{814

    4. Jadhav, A., Jadhav, P., Kulkarni, P.: A novel approach for the design of network intrusion detection system (nids). In: Sensor Network Security Technology and Privacy Communication System (SNS & PCS), 2013 International Conference on, IEEE (2013) 22{27

    5. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, ACM (2001) 97{106

    6. Le, T., Stahl, F., Gomes, J.B., Gaber, M.M., Di Fatta, G.: Computationally e cient rule-based classi cation for continuous streaming data. In: Research and Development in Intelligent Systems XXXI. Springer (2014) 21{34

    7. Gama, J., Zliobaite_, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Computing Surveys (CSUR) 46(4) (2014) 44

    8. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: SDM. Volume 7., SIAM (2007) 2007

    9. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Advances in arti cial intelligence{SBIA 2004. Springer (2004) 286{295

    10. Baena-Garc a, M., del Campo-Avila, J., Fidalgo, R., Bifet, A., Gavalda, R., MoralesBueno, R.: Early drift detection method. In: Fourth international workshop on knowledge discovery from data streams. Volume 6. (2006) 77{86

  • Metrics
Share - Bookmark