Studying and modelling the complete gravitational-wave signal from precessing black hole binaries

0044 English OPEN
Schmidt, Patricia;
  • Subject: QB

The coalescence of two stellar mass black holes is regarded as one of the most promising sources\ud for the first gravitational-wave (GW) detection with ground-based detectors. The current\ud detection strategies, however, rely on theoretical knowledge of the gravitatio... View more
  • References (178)
    178 references, page 1 of 18

    2 Preliminaries and framework 5 2.1 Convention and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 General Relativity in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 Linearised gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Interaction of GWs with test masses . . . . . . . . . . . . . . . . . . . 14 2.3.3 The generation of gravitational waves . . . . . . . . . . . . . . . . . . 15 2.3.4 Gravitational-wave sources . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Detecting gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.2 Searching for GWs: matched ltering . . . . . . . . . . . . . . . . . . 23 2.5 Modelling gravitational waves from coalescing compact binaries . . . . . . . . 25 2.5.1 Post-Newtonian theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.2 Numerical Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.2.1 BAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5.3 Complete waveform models . . . . . . . . . . . . . . . . . . . . . . . . 37

    [14] M. Alcubierre. Introduction to 3+1 Numerical Relativity. Oxford University Press, 2008. ISBN 978-0-19-920567-7.

    [15] B. Allen. The Stochastic gravity wave background: Sources and detection. 1996. URL http: //arxiv.org/abs/gr-qc/9604033.

    [16] K. Alvi. Energy and angular momentum ow into a black hole in a binary. Phys.Rev., D64: 104020, 2001. doi:10.1103/PhysRevD.64.104020.

    [17] M. Ansorg, B. Brugmann, and W. Tichy. A single-domain spectral method for black hole puncture data. Phys.Rev., D70:064011, 2004. doi:10.1103/PhysRevD.70.064011.

    [18] T. A. Apostolatos. Search templates for gravitational waves from precessing, inspiraling binaries. Phys.Rev., D52:605{620, 1995. doi:10.1103/PhysRevD.52.605.

    [19] T. A. Apostolatos. Construction of a template family for the detection of gravitational waves from coalescing binaries. Phys.Rev., D54:2421{2437, 1996. doi:10.1103/PhysRevD.54.2421.

    [20] T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S. Thorne. Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries. Phys.Rev., D49: 6274{6297, 1994. doi:10.1103/PhysRevD.49.6274.

    [21] R. L. Arnowitt, S. Deser, and C. W. Misner. The dynamics of general relativity. Gen.Rel.Grav., 40:1997{2027, 2008. doi:10.1007/s10714-008-0661-1.

    [22] K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A. Sundararajan. Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The Nonspinning case. Phys.Rev., D71:084008, 2005. doi:10.1103/PhysRevD.71.084008, 10.1103/PhysRevD.72.069903.

  • Metrics
Share - Bookmark