Inferring the IGM thermal history during reionisation with the Lyman-α forest power spectrum at redshift z ≃ 5

Article, Preprint English OPEN
Nasir, Fahad ; Bolton, James S. ; Becker, George D. (2016)
  • Publisher: Oxford University Press
  • Related identifiers: doi: 10.1093/mnras/stw2147
  • Subject: Astrophysics - Cosmology and Nongalactic Astrophysics
    arxiv: Astrophysics::Cosmology and Extragalactic Astrophysics

We use cosmological hydrodynamical simulations to assess the feasibility of constraining the thermal history of the intergalactic medium during reionisation with the Ly$\alpha$ forest at $z\simeq5$. The integrated thermal history has a measureable impact on the transmitted flux power spectrum that can be isolated from Doppler broadening at this redshift. We parameterise this using the cumulative energy per proton, $u_0$, deposited into a gas parcel at the mean background density, a quantity that is tightly linked with the gas density power spectrum in the simulations. We construct mock observations of the line of sight Ly$\alpha$ forest power spectrum and use a Markov Chain Monte Carlo approach to recover $u_{0}$ at redshifts $5 \leq z \leq 12$. A statistical uncertainty of $\sim 20$ per cent is expected (at 68 per cent confidence) at $z\simeq 5$ using high resolution spectra with a total redshift path length of $\Delta z=4$ and a typical signal-to-noise ratio of $\rm S/N=15$ per pixel. Estimates for the expected systematic uncertainties are comparable, such that existing data should enable a measurement of $u_0$ to within $\sim 30$ per cent. This translates to distinguishing between reionisation scenarios with similar instantaneous temperatures at $z\simeq 5$, but with an energy deposited per proton that differs by $2$-$3\, \rm eV$ over the redshift interval $5\leq z \leq 12$. For an initial temperature of $T\sim 10^{4}\rm\,K$ following reionisation, this corresponds to the difference between early ($z_{\rm re}=12$) and late ($z_{\rm re}=7$) reionisation in our models.
  • References (55)
    55 references, page 1 of 6

    Becker, G. D. & Bolton, J. S. 2013, MNRAS, 436, 1023 Becker, G. D., Bolton, J. S., Haehnelt, M. G., & Sargent, W. L. W. 2011, MNRAS, 410, 1096

    Becker, G. D., Bolton, J. S., & Lidz, A. 2015a, PASA, 32, 045

    Becker, G. D., Bolton, J. S., Madau, P., Pettini, M., RyanWeber, E. V., & Venemans, B. P. 2015b, MNRAS, 447, 3402

    Becker, G. D., Hewett, P. C., Worseck, G., & Prochaska, J. X. 2013, MNRAS, 430, 2067

    Boera, E., Murphy, M. T., Becker, G. D., & Bolton, J. S. 2014, MNRAS, 441, 1916

    -. 2016, MNRAS, 456, L79

    Bolton, J. S. & Becker, G. D. 2009, MNRAS, 398, L26 Bolton, J. S., Becker, G. D., Haehnelt, M. G., & Viel, M. 2014, MNRAS, 438, 2499

    Bolton, J. S., Becker, G. D., Raskutti, S., Wyithe, J. S. B., Haehnelt, M. G., & Sargent, W. L. W. 2012, MNRAS, 419, 2880

    Bolton, J. S. & Haehnelt, M. G. 2007, MNRAS, 374, 493 Bolton, J. S., Viel, M., Kim, T.-S., Haehnelt, M. G., & Carswell, R. F. 2008, MNRAS, 386, 1131 Bouwens, R. J., Illingworth, G. D., Oesch, P. A., Caruana, J., Holwerda, B., Smit, R., & Wilkins, S. 2015, ApJ, 811, 140

    Calura, F., Tescari, E., D'Odorico, V., Viel, M., Cristiani, S., Kim, T.-S., & Bolton, J. S. 2012, MNRAS, 422, 3019 Cen, R., McDonald, P., Trac, H., & Loeb, A. 2009, ApJ, 706, L164

  • Metrics
    No metrics available