Thermal effects in InGaAs/AlAsSb quantum-cascade lasers

Article English OPEN
Evans, C.A. ; Jovanović, V.D. ; Indjin, D. ; Ikonić, Z. ; Harrison, P. (2006)
  • Publisher: The Institution of Engineering and Technology

A quantum-cascade laser (QCL) thermal model is presented. On the basis of a finite-difference approach, the model is used in conjunction with a self-consistent carrier transport model to calculate the temperature distribution in a near-infrared InGaAs/AlAsSb QCL. The presented model is used to investigate the effects of driving conditions and device geometries on the active-region temperature, which has a major influence on the device performance. A buried heterostructure combined with epilayer-down mounting is found to offer the best performance compared with alternative structures and has thermal time constants up to eight times smaller. The presented model provides a valuable tool for understanding the thermal dynamics inside a QCL and will help to improve operating temperatures.
  • References (25)
    25 references, page 1 of 3

    [1] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oestrele, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science, vol. 295, p. 301-305, 2002.

    [2] A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuouswave mode above 90 0C at λ ∼ 5.25μm,” Appl. Phys. Lett., vol. 88, no. 051105, 2006.

    [3] J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, “High-power, room-temperature, and continuouswave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8μm,” Appl. Phys. Lett., vol. 87, no. 041104, 2005.

    [4] A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett., vol. 84, no. 3, p. 314-316, 2004.

    [5] J. S. Yu, S. R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi, “Room-temperature continuous-wave operation of quantum-cascade lasers at λ ∼ 4μm,” Appl. Phys. Lett., vol. 88, no. 041111, 2006.

    [6] A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Continuouswave operation of λ ∼ 4.8μm quantum-cascade lasers at room temperature,” Appl. Phys. Lett., vol. 85, no. 12, p. 2166-2168, 2004.

    [7] D. G. Revin, L. R. Wilson, E. A. Zibnik, R. P. Green, and J. W.Cockburn, “InGaAs/AlAsSb quantum cascade lasers,” Appl. Phys. Lett., vol. 85, no. 18, p. 3992-3994, 2004.

    [8] Q. Yang, C. Manz, W. Bronner, C. Mann, L. Kirste, K. Ko¨hler, and J. Wagner, “GaInAs/AlAsSb quantum-cascade lasers operating up to 400 K,” Appl. Phys. Lett., vol. 86, no. 131107, 2005.

    [9] Q. Yang, C. Manz, W. Bronner, L. Kirste, K. Ko¨hler, and J. Wagner, “GaInAs/AlGaAsSb quantum-cascade lasers,” Appl. Phys. Lett., vol. 86, no. 131109, 2005.

    [10] Q. Yang, C. Manz, W. Bronner, R. Moritz, C. Mann, G. Kaufel, K. Ko¨hler, and J. Wagner, “Continuous-wave operation of GaInAs/AlGaAsSb quantum-cascade lasers,” IEEE Photon. Technol. Lett., vol. 17, no. 11, p. 2283-2285, 2005.

  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    274
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    White Rose Research Online - IRUS-UK 0 274
Share - Bookmark