Structure and dynamics of aqueous 2 propanol mixtures: a THz TDS, NMR and neutron diffraction study

Article English OPEN
McGregor, J. ; Li, R. ; Zeitler, J.A. ; D Agostino, C. ; Collins, J.H.P. ; Mantle, M. ; Manyar, H. ; Holbrey, J.D. ; Falkowska, M. ; Youngs, T.G.A. ; Hardacre, C. ; Stitt, E.H. ; Gladden, L.F. (2015)
  • Publisher: The Royal Society of Chemistry

Aqueous liquid mixtures, in particular, those involving amphiphilic species, play an important role in many physical, chemical and biological processes. Of particular interest are alcohol/water mixtures; however, the structural dynamics of such systems are still not fully understood. Herein, a combination of terahertz time domain spectroscopy (THz TDS) and NMR relaxation time analysis has been applied to investigate 2 propanol/water mixtures across the entire composition range; while neutron diffraction studies have been carried out at two specific concentrations. Excellent agreement is seen between the techniques with a maximum in both the relative absorption coefficient and the activation energy to molecular motion occurring at 90 mol % H2O. Furthermore, this is the same value at which well established excess thermodynamic functions exhibit a maximum/minimum. Additionally, both neutron diffraction and THz TDS have been used to provide estimates of the size of the hydration shell around 2 propanol in solution. Both methods determine that between 4 and 5 H2O molecules per 2 propanol are found in the 2 propanol/water clusters at 90 mol% H2O. Based on the acquired data, a description of the structure of 2 propanol/water across the composition range is presented.
  • References (11)
    11 references, page 1 of 2

    1 C. Corsaro, J. Spooren, C. Branca, N. Leone, M. Broccio, C. Kim, S. H. Chen, H. E. Stanley and F. Mallamace, J. Phys. Chem. B, 2008, 112, 10449-10454.

    2 D. R. Palo, R. A. Dagle and J. D. Holladay, Chem. Rev., 2007, 107, 3992-4021.

    3 P. Kumar, Z. Yan, L. Xu, M. G. Mazza, S. V. Buldyrev, S. H. Chen, S. Sastry and H. E. Stanley, Phys. Rev. Lett., 2006, 97, 177802.

    4 S. H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone and E. Mamontov, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 9012-9016.

    5 B. S. Akpa, C. D'Agostino, L. F. Gladden, K. Hindle, J. McGregor, H. Manyar, R. Li, M. Neurock, D. W. Rooney, N. Sinha, E. H. Stitt, D. Weber and J. A. Zeitler, J. Catal., 2012, 289, 30-41.

    6 J. R. Battler, W. M. Clark and R. L. Rowley, J. Chem. Eng. Data, 1985, 30, 254-259.

    7 K. Soliman and E. Marschall, J. Chem. Eng. Data, 2002, 35, 375-381.

    8 M. Akramova, O. Shokirow and T. Nurtidinov, Dokl. Akad. Nauk Tadzh. SSR, 1976, 19, 27-30.

    9 Z. J. Derlacki, A. J. Easteal, A. V. J. Edge, L. A. Woolf and Z. Roksandic, J. Phys. Chem., 1985, 89, 5318-5322.

    10 N. Micali, S. Trusso, C. Vasi, D. Blaudez and F. Mallamace, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1996, 54, 1720-1724.

  • Similar Research Results (1)
  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    31
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    White Rose Research Online - IRUS-UK 0 31
Share - Bookmark