A computational study of the interaction of organic surfactants with goethite α-FeO(OH) surfaces

Article English OPEN
Santos Carballal, David ; Du, Zhimei ; King, Helen E. ; de Leeuw, Nora (2016)

We have studied the adsorption of three organic molecules onto different surfaces of goethite α−FeO(OH) using atomistic simulation techniques. New interatomic potentials for the interaction between goethite and the organic molecules were developed. In the majority of cases the organic molecules were found capable of forming a coordinate bond via their carbonyl oxygen atom with a surface iron ion. In addition, weaker hydrogen-bonds were formed between the organic molecules and the surfaces. The largest adsorption energies were obtained for the modes of adsorption where the organic molecules bridged or spanned the periodic grooves or dips present on the goethite surfaces, thus forming several interactions between the molecule and the surface. Among all adsorbates studied, the hydroxamic acid molecule in the eclipsed conformation releases the largest adsorption energy when it interacts with goethite surfaces, followed by the staggered conformations of hydroxyethanal and methanoic acid molecules. The adsorption energies are in the range of −60.0 to −186.4 kJ∙mol−1. Due to the surface structure, as well as the flexibility and size of hydroxamic acid and hydroxyethanal, in most cases these adsorbate molecules lose their planarity with respect to the structure of the isolated molecules. We found that the replacement of pre-adsorbed water by the organic adsorbates is an exothermic process on all the goethite surfaces studied. The removal by sorption onto iron particles of humic and fulvic acids, the major substituents of natural organic matter (NOM) that pollutes aquifers and soils, is corroborated by our calculations of the adsorption of surfactants with the same functional groups to the surfaces of oxidised iron particles.
  • References (29)
    29 references, page 1 of 3

    a Graduate Global Excellence Award and an Overseas Research 23 R. E. Saichek and K. R. Reddy, Crit. Rev. Environ. Sci. Scholarship from the UCL Industrial Doctorate Centre in Technol., 2005, 35, 115-192.

    Molecular Modelling and Materials Science. N. H. d. L. is 24 R. Armishaw, R . P. Bardos, R. M. Dunn, J. M. Hill, M. Pearl, grateful to the Royal Society for the provision of an Industry T. Rampling and P. A. Wood, Review of Innovative Fellowship. All data created during this research is openly Contaminated Soil Clean-Up Processes, Warren Springs, available from the University of Cardiff Research Portal at http:// Stevenage, 1992.

    dx.doi.org/10.17035/d.2016.0008219810. 25 N. H. de Leeuw and T. G. Cooper, Geochim. Cosmochim. Acta, 2007, 71, 1655-1673.

    26 K. D. Kwon and J. D. Kubicki, Langmuir, 2004, 20, 9249-9254.

    References 27 A. T. Stone, A. Torrents, J. Smolen, D. Vasudevan and J. Hadley, Environ. Sci. Technol., 1993, 27, 895-909. 1 R. M. Cornell and U. Schwertmann, The Iron Oxides, Wiley- 28 E. M. Cooper and D. Vasudevan, J. Colloid Interface Sci., 2009, VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2nd edn, 333, 85-96.

    2003. 29 M. V. Biber and W. Stumm, Environ. Sci. Technol., 1994, 28, 2 S. L. S. Stipp, M. Hansen, R. Kristensen, M. F. Hochella, 763-768.

    L. Bennedsen, K. Dideriksen, T. Balic-Zunic, D. L´eonard 30 K. Hanna, S. Martin, F. Quil`es and J.-F. Boily, Langmuir, and H.-J. Mathieu, Chem. Geol., 2002, 190, 321-337. 2014, 30, 6800-6807. 3 C. L. Chun, R. M. Hozalski and W. A. Arnold, Environ. Sci. 31 Y. S. Hwang, J. Liu, J. J. Lenhart and C. M. Hadad, J. Colloid Technol., 2005, 39, 8525-8532. Interface Sci., 2007, 307, 124-134. 4 P. J. Shea, T. A. Machacek and S. D. Comfort, Environ. Pollut., 32 M. Lindegren, J. S. Loring and P. Persson, Langmuir, 2009, 2004, 132, 183-188. 25, 10639-10647. 5 S. F. O'Hannesin and R. W. Gillham, Ground Water, 1998, 36, 33 C. R. Evanko and D. A. Dzombak, J. Colloid Interface Sci., 164-170. 1999, 214, 189-206. 6 G. A. Waychunas, C. S. Kim and J. F. Baneld, J. Nanopart. 34 L. S. Balistrieri and J. W. Murray, Geochim. Cosmochim. Acta, Res., 2005, 7, 409-433. 1987, 51, 1151-1160. 7 S. R. Kanel, B. Manning, L. Charlet and H. Choi, Environ. Sci. 35 M. A. Ali and D. A. Dzombak, Environ. Sci. Technol., 1996, 30, Technol., 2005, 39, 1291-1298. 1061-1071. 8 X. Li and W. Zhang, Langmuir, 2006, 22, 4638-4642. 36 J.-F. Boily, P. Persson and S. Sjo¨berg, Geochim. Cosmochim. 9 J. A. Mielczarski, G. M. Atenas and E. Mielczarski, Appl. Acta, 2000, 64, 3453-3470.

    Catal., B, 2005, 56, 289-303. 37 C. F. Whitehead, R. F. Carbonaro and A. T. Stone, Aquat. 10 Z. Chen, X. Jin, Z. Chen, M. Megharaj and R. Naidu, J. Colloid Geochem., 2015, 21, 99-121.

    Interface Sci., 2011, 363, 601-607. 38 T. A. Kendall, M. F. Hochella Jr and U. Becker, Chem. Geol., 11 S. J. T. Pollard, M. Lythgo and R. Duarte-Davidson, in 2005, 216, 17-35.

    Assessment and Reclamation of Contaminated Land, ed. R. E. 39 C. R. Evanko and D. A. Dzombak, Environ. Sci. Technol., 1998, Hester and R. M. Harrison, The Royal Society of 32, 2846-2855.

  • Similar Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark