In What Sense Is the Kolmogorov-Sinai Entropy a Measure for Chaotic Behaviour? – Bridging the Gap Between Dynamical Systems Theory and Communication Theory

Article English OPEN
Frigg, Roman (2004)
  • Subject: PHI

Article
  • References (26)
    26 references, page 1 of 3

    Alekseev, V. M. & Yakobson, M. V. [1981]: 'Symbolic Dynamics and Hyperbolic Dynamical Systems', Physics Reports, 75, pp. 287-325.

    Arnold, V. I. & Avez, A. [1968]: Ergodic Problems of Classical Mechanics, New York, NY & Amsterdam: W. A. Benjamin.

    Batterman, R. [1993]: 'Defining Chaos', Philosophy of Science, 60, pp. 43-66.

    Batterman, R. & White, H. [1996]: 'Chaos and Algorithmic Complexity', Foundations of Physics, 26, pp. 307-336.

    Belot, G. & Earman, J. [1997]: 'Chaos out of Order: Quantum Mechanics, the Correspondence Principle and Chaos', Studies in the History and Philosophy of Modern Physics, 28, pp. 147-82.

    Billingsley, P. [1965]: Ergodic Theory and Information, New York, NY: Wiley.

    Brudno, A. A. [1978]: 'The Complexity of the Trajectory of a Dynamical System', Russian Mathematical Surveys, 33, pp. 197-8.

    Carroll, L. [1998]: Alice's Adventures in Wonderland and Through the Looking-Glass, London: Penguin.

    Cornfeld, I. P., Fomin, S. V. & Sinai, Y. G. [1982]: Ergodic Theory, Berlin & New York, NY: Springer.

    Cornfeld, I. P. & Sinai, Y. G. [1980]: 'Entropy Theory of Dynamical Systems', in Y. G. Sinai (ed.), 1980, Dynamical Systems II. Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics, Berlin & New York, NY: Springer, pp. 36-58.

  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    6
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    SAS-SPACE - IRUS-UK 0 6
Share - Bookmark