Combined Two-Photon Excitation and d→f Energy Transfer in a Water-Soluble Ir(III) /Eu(III) Dyad: Two Luminescence Components from One Molecule for Cellular Imaging.

Article English OPEN
Baggaley, E.; Cao, D.K.; Sykes, D.; Botchway, S.W.; Weinstein, J.A.; Ward, M.D.;
  • Publisher: John Wiley & Sons

The first example of cell imaging using two independent emission components from a dinuclear d/f complex is reported. A water-stable, cell-permeable Ir(III) /Eu(III) dyad undergoes partial Ir→Eu energy transfer following two-photon excitation of the Ir unit at 780 nm. E... View more
  • References (24)
    24 references, page 1 of 3

    [a] Dr. E. Baggaley, Prof. D.-K. Cao, Dr. D. Sykes, Dr. J. A. Weinstein, Prof. M. D. Ward Department of Chemistry University of Sheffield, Sheffield S3 7HF (UK) E-mail: [b] Prof. D.-K. Cao State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University, Nanjing 210093 (P.R. China) [c] Prof. S. W. Botchway Rutherford Appleton Laboratory, STFC, Research Complex at Harwell Harwell Science and Innovation Campus, Didcot OX11 0FA (UK) Supporting information for this article is available on the WWW under 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

    [1] a) N. Johnsson, K. Johnsson, ACS Chem. Biol. 2007, 2, 31; b) L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, A. S. Ito, Appl. Spec. Rev. 2006, 41, 575; c) B. Hçtzer, I. L. Medintz, N. Hildebrandt, Small 2012, 8, 2297; d) H. Sahoo, RSC Adv. 2012, 2, 7017.

    [2] a) S. Yao, K. D. Belfield, Eur. J. Org. Chem. 2012, 3199; b) S. Sumalekshmy, C. J. Fahrni, Chem. Mater. 2011, 23, 483; c) H. M. Kim, B. R. Cho, Acc. Chem. Res. 2009, 42, 863.

    [3] a) W. Becker, J. Microsc. 2012, 247, 119; b) H. C. Ishikawa-Ankerhold, R. Ankerhold, G. P. C. Drummen, Molecules 2012, 17, 4047; c) G.-J. Bakker, V. Andresen, R. M. Hoffman, P. Friedl, Methods in Enzymology, 2012, 504, 109; d) Y. Sun, N. M. Hays, A. Periasamy, M. W. Davidson, R. N. Day, Methods in Enzymology, 2012, 504, 371.

    [4] a) R. Ebrecht, C. D. Paul, F. S. Wouters, Protoplasma 2014, 251, 293; b) C. A. B cherl, A. Bader, A. H. Westphal, S. P. Laptenok, J. W. Borst, Protoplasma 2014, 251, 383; c) P. A. Waghorn, M. W. Jones, M. B. M. Theobald, R. L. Arrowsmith, S. I. Pascu, S. W. Botchway, S. Faulkner, J. R. Dilworth, Chem. Sci. 2013, 4, 1430; d) M. J. Ruedas-Rama, A. Orte, E. A. H. Hall, J. M. Alvarez-Pez, E. M. Talavera, Analyst 2012, 137, 1500; e) R. K. Pai, M. Cotlet, J. Phys. Chem. C 2011, 115, 1674; f) G. Giraud, H. Schulze, T. T. Bachmann, C. J. Campbell, A. R. Mount, P. Ghazal, M. R. Khondoker, A. J. Ross, S. W. J. Ember, I. Ciani, C. Tlili, A. J. Walton, J. G. Terry, J. Crain, Int. J. Mol. Sci. 2009, 10, 1930.

    [5] a) M. P. Coogan, V. Fern ndez-Moreira, Chem. Commun. 2014, 50, 384; b) K. K.-W. Lo, S. P.-Y. Li, RSC Adv. 2014, 4, 10560; c) J.-C. G. B nzli, Chem. Rev. 2010, 110, 2729; d) E. J. New, D. Parker, D. G. Smith, J. W. Walton, Curr. Opin. Chem. Biol. 2010, 14, 238; e) Q. Zhao, C. Huang, F. Li, Chem. Soc. Rev. 2011, 40, 2508; f) E. Baggaley, J. A. Weinstein, J. A. G. Williams, Coord. Chem. Rev. 2012, 256, 1762.

    [6] a) M. R. Gill, J. Garcia-Lara, S. J. Foster, C. Smythe, G. Battaglia, J. A. Thomas, Nat. Chem. 2009, 1, 662; b) D. D. Sun, Y. A. Liu, D. Liu, R. Zhang, X. C. Yang, J. Liu, Chem. Eur. J. 2012, 18, 4285; c) H. Komatsu, K. Yoshihara, H. Yamada, Y. Kimura, A. Son, S. Nishimoto, K. Tanabe, Chem. Eur. J. 2013, 19, 1971; d) E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein, J. A. Thomas, Angew. Chem. Int. Ed. 2014, 53, 3367; Angew. Chem. 2014, 126, 3435.

    [7] a) K. K.-W. Lo, K. Y. Zhang, S. P.-Y. Li, Eur. J. Inorg. Chem. 2011, 3551; b) V. Fernandez-Moreira, M. L. Ortego, C. F. Williams, M. P. Coogan, M. D. Villacampa, M. C. Gimeno, Organometallics 2012, 31, 5950.

    [8] a) C. Li, M. Yu, Y. Sun, Y. Wu, C. Huang, C. Li, J. Am. Chem. Soc. 2011, 133, 11231; b) P. Steunenberg, A. Ruggi, N. S. van den Berg, T. Buckle, J. Kuil, F. W. B. van Leeuwen, A. H. Velders, Inorg. Chem. 2012, 51, 2105; c) C.-L. Ho, K.-L. Wong, H.-K. Kong, Y.-M. Ho, C. T.-L. Chan, W.-M. Kwok, K. S.-Y. Leung, H.-L. Tam, M. H.-W. Lam, X.-F. Ren, A.-M. Ren, J.-K. Feng, W.-Y. Wong, Chem. Commun. 2012, 48, 2525; d) D.-L. Ma, H.-J. Zhong, W.-C. Fu, D. S.-H. Chan, H.-Y. Kwan, W.-F. Fong, L.-H. Chung, C.-Y. Wong, C.-H. Leung, Plos One 2013, 8, e55751; e) G. Li, Y. Chen, J. Wu, L. Ji, H. Chao, Chem. Commun. 2013, 49, 2040; f) L. Murphy, A. Congreve, L.-O. P lsson, J. A. G. Williams, Chem. Commun. 2010, 46, 8743.

    [9] a) S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, J. A. G. Williams, Proc. Natl. Acad. Sci. USA 2008, 105, 16071; b) C.-K. Koo, L. K.-Y. So, K.-L. Wong, Y.-M. Ho, Y.-W. Lam, M. H.-W. Lam, K.-W. Cheah, C. C.-W. Cheng, K.-M. Kwok, Chem. Eur. J. 2010, 16, 3942; c) S. Wu, C. Zhu, C. Zhang, Z. Yu, W. He, Y. He, Y. Li, J. Wang, Z. Guo, Inorg. Chem. 2011, 50, 11847.

  • Similar Research Results (8)
  • Metrics
Share - Bookmark