Tree height integrated into pantropical forest biomass estimates

Other literature type, Article English OPEN
Feldpausch, T. R. ; Lloyd, J. ; Lewis, S. L. ; Brienen, R. J. W. ; Gloor, M. ; Monteagudo Mendoza, A. ; Lopez-Gonzalez, G. ; Banin, L. ; Abu Salim, K. ; Affum-Baffoe, K. ; Alexiades, M. ; Almeida, S. ; Amaral, I. ; Andrade, A. ; Aragão, L. E. O. C. ; Araujo Murakami, A. ; Arets, E. J. M. M. ; Arroyo, L. ; Aymard C., G. A. ; Baker, T. R. ; Bánki, O. S. ; Berry, N. J. ; Cardozo, N. ; Chave, J. ; Comiskey, J. A. ; Alvarez, E. ; Oliveira, A. ; Fiore, A. ; Djagbletey, G. ; Domingues, T. F. ... view all 86 authors (2012)
  • Publisher: Copernicus Publications
  • Journal: (issn: 1726-4189, eissn: 1726-4189)
  • Related identifiers: doi: 10.5194/bg-9-3381-2012
  • Subject: QH540-549.5 | CARBON STOCKS | QE1-996.5 | LAND-USE CHANGE | QH501-531 | Geology | SECONDARY FORESTS | Life | Ecology | AMAZONIAN FORESTS | Silvicultura | Amazonia | Sin determinar | Biomassa | TROPICAL RAIN-FOREST | ABOVEGROUND LIVE BIOMASS | plotes permanente | NET PRIMARY PRODUCTION | GEOSCIENCES, MULTIDISCIPLINARY | Science & Technology, Life Sciences & Biomedicine, Physical Sciences, Ecology, Geosciences, Multidisciplinary, Environmental Sciences & Ecology, Geology, TROPICAL RAIN-FOREST, ABOVEGROUND LIVE BIOMASS, NET PRIMARY PRODUCTION, LAND-USE CHANGE, WOOD DENSITY, AMAZONIAN FORESTS, CARBON STOCKS, ALLOMETRIC EQUATIONS, NEOTROPICAL FOREST, SECONDARY FORESTS | NEOTROPICAL FOREST | 1105 | WOOD DENSITY | Medio Ambiente | ALLOMETRIC EQUATIONS | 1904

Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (<i>H</i>). We estimate the effect of incorporating <i>H</i> on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 <i>H</i> and diameter measurements and harvested trees from 20 sites to answer the following questions: <br><br> 1. What is the best <i>H</i>-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? <br><br> 2. To what extent does including <i>H</i> estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? <br><br> 3. What effect does accounting for <i>H</i> have on plot- and continental-scale forest biomass estimates? <br><br> The mean relative error in biomass estimates of destructively harvested trees when including <i>H</i> (mean 0.06), was half that when excluding <i>H</i> (mean 0.13). Power- and Weibull-<i>H</i> models provided the greatest reduction in uncertainty, with regional Weibull-<i>H</i> models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm <i>D</i>) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including <i>H</i> reduces errors from 41.8 Mg ha<sup>−1</sup> (range 6.6 to 112.4) to 8.0 Mg ha<sup>−1</sup> (−2.5 to 23.0). For all plots, aboveground live biomass was −52.2 Mg ha<sup>−1</sup> (−82.0 to −20.3 bootstrapped 95% CI), or 13%, lower when including <i>H</i> estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to <i>H</i>. After accounting for variation in <i>H</i>, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km<sup>2</sup> and store 285 Pg C (estimate including <i>H</i>), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31–39 bootstrapped 95% CI) if <i>H</i> is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree <i>H</i> is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation.
  • References (122)
    122 references, page 1 of 13

    Akaike, H.: A new look at the statistical model identification, IEEE Trans. Autom. Contr., 19, 716-723, 1974.

    Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., Lema, A., Moreno, F., Orrego, S., and Rodr´ıguez, L.: Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia, For. Ecol. Manage., 267, 297-308, doi:10.1016/j.foreco.2011.12.013, 2012.

    Anten, N. P. and Schieving, F.: The role of wood mass density and mechanical constraints in the economy of tree architecture, Am. Nat., 175, 250-260, doi:10.1086/649581, 2010.

    Aragao, L. E. and Shimabukuro, Y. E.: The incidence of fire in Amazonian forests with implications for REDD, Science, 328, 1275- 1278, doi:10.1126/science.1186925, 2010.

    Arau´jo, T. M., Higuchi, N., and Andrade de Carvalho Ju´nior, J.: Comparison of formulae for biomass content determination in a tropical rain forest site in the state of Para´, Brazil, For. Ecol. Manage., 117, 43-52, 1999.

    Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J. K., Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., PaezAcosta, G., Victoria, E., Secada, L., Valqui, M., and Hughes, R. F.: High-resolution forest carbon stocks and emissions in the Amazon, Proc. Natl. Acad. Sci. USA, 107, 16738-16742, doi:10.1073/pnas.1004875107, 2010.

    Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nature Clim. Change, 2, 182-185, available at: nclimate1354.html#supplementary-information, 2012.

    Bailey, R. L.: The potential of Weibull-type functions as flexible growth curves: discussion, Can. J. For. Res., 10, 117-118, 1979.

    Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A., Neill, D. A., Vargas, P. N., Pitman, N. C., Silva, J. N., and Martinez, R. V.: Increasing biomass in Amazonian forest plots, Philos. Trans. R. Soc. Lond. B Biol. Sci., 359, 353-365, doi:10.1098/rstb.2003.1422, 2004a.

    Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Lloyd, J., Monteagudo, A., Neill, D. A., Patino, S., Pitman, N. C. A., Silva, J. N. M., and Martinez, R. V.: Variation in wood density determines spatial patterns in Amazonian forest biomass, Global Change Biol., 10, 545-562, doi:10.1111/j.1529- 8817.2003.00751.x, 2004b.

  • Related Research Results (4)
  • Metrics
    No metrics available