Interfacial mechanisms in active emulsions

Article English OPEN
Herminghaus, S ; Maass, CC ; Krüger, C ; Thutupalli, S ; Goehring, L ; Bahr, C (2014)

Active emulsions, i.e., emulsions whose droplets perform self-propelled motion, are of tremendous interest for mimicking collective phenomena in biological populations such as phytoplankton and bacterial colonies, but also for experimentally studying rheology, pattern formation, and phase transitions in systems far from thermal equilibrium. For fuelling such systems, molecular processes involving the surfactants which stabilize the emulsions are a straightforward concept. We outline and compare two different types of reactions, one which chemically modifies the surfactant molecules, the other which transfers them into a different colloidal state. While in the first case symmetry breaking follows a standard linear instability, the second case turns out to be more complex. Depending on the dissolution pathway, there is either an intrinsically nonlinear instability, or no symmetry breaking at all (and hence no locomotion).
  • References (11)
    11 references, page 1 of 2

    54 S. Thutupalli, R. Seemann and S. Herminghaus, New J. Phys., 65 Ch. Bahr, Phys. Rev. E: Stat., Nonlinear, So Matter Phys., 2011, 13, 073021. 2006, 73, 030702(R).

    55 S. Thutupalli and S. Herminghaus, Eur. Phys. J. E, 2013, 36, 66 Food Proteins and Lipids, ed. S. Damodaran, Springer, 91. Heidelberg, 1997.

    56 A. N. Zaikin and A. M. Zhabotinsky, Nature, 1970, 225, 535- 67 N. Matubayasi, S. Sugiyama, M. Kanzaki and A. Matuzawa, 537. J. Colloid Interface Sci., 1997, 196, 123.

    57 A. T. Winfree, Science, 1972, 175, 634-636. 68 B.-H. Chen, C. A. Miller and P. R. Garrett, Langmuir, 1998, 14,

    58 S. Thutupalli, Towards Autonomous So Matter Systems, 31. Springer, Heidelberg, 2014. 69 P. D. Todorov, et al., J. Colloid Interface Sci., 2002, 245, 371.

    59 M. D. LeVan and J. Newman, AIChE J., 1976, 22, 695-701. 70 S. Ariyaprakai and S. R. Dungan, Langmuir, 2008, 24, 3061.

    60 M. Schmitt and H. Stark, Europhys. Lett., 2013, 101, 44008. 71 I. Langmuir, J. Am. Chem. Soc., 1916, 38, 2221.

    61 V. Pimienta, M. Brost, N. Kovalchuk, S. Bresch and 72 A. J. I. Ward and K. Quingley, J. Dispersion Sci. Technol., 1990, O. Steinbock, Angew. Chem., Int. Ed., 2011, 50, 10728-10731. 11, 143.

    62 K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus and 73 S. G. Oh and D. O. Shah, J. Am. Oil Chem. Soc., 1993, 70, 673. C. Bahr, Langmuir, 2012, 28, 12426-12431. 74 Handbook of Mathematical Functions, ed. M. Abramowitz and

    63 A. Sengupta, Topological Micro-Fluidics, Springer, I. A. Stegun, Dover, New York, 1965. Heidelberg, 2013. 75 S. Gangwal, O. J. Cayre, M. Z. Bazant and O. D. Velev, Phys.

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Institutional Repository - IRUS-UK 0 64
Share - Bookmark