Deformations of QFano 3folds and weak Fano manifolds

Subject: QAarxiv: Mathematics::Algebraic Geometry  Quantitative Biology::Biomolecules  Mathematics::Symplectic Geometry

References
(29)
[1] D. Abramovich, J. Wang, Equivariant resolution of singularities in characteristic 0, Math. Res. Lett. 4 (1997), no. 23, 427{433.
[2] V. Alexeev, General elephants of QFano 3folds, Compos. Math. 91, No.1, 91{ 116 (1994).
[3] S. Alt nok, G. Brown, M. Reid, Fano 3folds, K3 surfaces and graded rings. Topology and geometry: commemorating SISTAG, 25{53, Contemp. Math., 314, Amer. Math. Soc., Providence, RI, 2002.
[4] J. Bingener, Lokale Modulrume in der analytischen Geometrie, Band 1,2, With the cooperation of Siegmund Kosarew, Aspects of Mathematics, D3. Friedr. Vieweg and Sohn, Braunschweig, 1987. pp. i{xix and xiv+369 pp, 370{709.
[5] C. Birkar, P. Cascini, C. Hacon, J. McKernan, Existence of minimal models for varieties of log general type, J. Am. Math. Soc. 23, No. 2, 405{468 (2010).
[6] G. Brown, M. Kerber, M. Reid, Fano 3folds in codimension 4, Tom and Jerry. Part I, Compos. Math. 148 (2012), no. 4, 1171{1194.
[7] RO. Buchweitz, H. Flenner, A semiregularity map for modules and applications to deformations, Compositio Math. 137 (2003), no. 2, 135{210.
[8] D.M. Burns, J. Wahl, Local contributions to global deformations of surfaces, Invent. Math. 26 (1974), 67{88.
[9] P. Deligne, Theoreme de Lefschetz et criteres de degenerescence de suites spectrales, Inst. Hautes Etudes Sci. Publ. Math, No. 35, 1968, 259{278.
[10] P. Deligne, Theorie de Hodge II, Inst. Hautes Etudes Sci. Publ. Math. No. 44 (1974), 5{77.

Similar Research Results
(8)

Metrics
0views in OpenAIRE0views in local repository64downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads Warwick Research Archives Portal Repository  IRUSUK 0 64

 Download from


Cite this publication