Marginal stability and predator-prey behaviour within storm tracks

Article English OPEN
Novak, L.; Ambaum, M. H. P.; Tailleux, R.;

A predator-prey relationship between storm track intensity and growth rate is revealed in reanalysis data for the North Atlantic and North Pacific, as well as in an idealised global circulation model with a zonally asymmetric heating dipole. Averaging in the phase space... View more
  • References (46)
    46 references, page 1 of 5

    Ambaum MHP, Novak L. 2014. A nonlinear oscillator describing storm track variability. Q. J. R. Meteorol. Soc. 140: 2680-2684.

    Barnes EA, Screen JA. 2015. The impact of Arctic warming on the midlatitude jet stream: Can it? Has it? Will it? WIREs Clim. Change 6: 277-286, doi: 10.1002/wcc.337.

    Barry L, Craig GC, Thuburn J. 2002. Poleward heat transport by the atmospheric heat engine. Nature 415: 774-777.

    Brayshaw DJ, Hoskins BJ, Blackburn M. 2011. The basic ingredients of the North Atlantic storm track, Part II: Sea surface temperatures. J. Atmos. Sci. 68: 1784 - 1805.

    Chang EKM, Orlanski I. 1993. Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci. 50: 999 - 1015.

    Charney JG. 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteorol. 4: 136 - 162.

    Eady ET. 1949. Long waves and cyclone waves. Tellus 1: 33 - 52.

    Fleming RJ. 2014. Explosive baroclinic instability. J. Atmos. Sci. 71: 2155 - 2168.

    Fraedrich K, Kirk E, Lunkeit F. 1998. 'PUMA: Portable University model of the atmosphere', Technical report 16. Deutsches Klimarechenzentrum: Hamburg, Germany.

    Fraedrich K, Kirk E, Luksch U, Lunkeit F. 2005. The Portable University Model of the Atmosphere (PUMA): Storm track dynamics and low frequency variability. Meteorol. Z. 14: 735 - 745.

  • Related Organizations (4)
  • Metrics
Share - Bookmark