Share  Bookmark

 Download from


 Funded by

[1] Laila Alabidi and David H. Lyth. 'Inflation models and observation'. In: JCAP 0605 (2006), p. 016. arXiv: astroph/0510441 [astroph] (cit. on p. 104).
[2] L. Amendola. 'Non Gaussian likelihood function and COBE data'. In: Mon.Not.Roy.Astron.Soc. 283 (1996), pp. 983989 (cit. on p. 131).
[3] Luca Amendola. 'The dependence of cosmological parameters estimated from the microwave background on nongaussianity'. In: Astrophys.J. 569 (2002), pp. 595599. arXiv: astroph/0107527 [astroph] (cit. on p. 131).
[4] M Andrews. 'Evolution of moments over quantum wavepackets or classical clusters'. In: Journal of Physics A 18 (1985), p. 37 (cit. on p. 108).
[5] Valentin Assassi, Daniel Baumann and Daniel Green. 'On Soft Limits of Inflationary Correlation Functions'. In: (2012). arXiv: 1204.4207 [hepth] (cit. on pp. 104, 125).
[6] LE Ballentine. 'Moment equations for probability distributions in classical and quantum mechanics'. In: Physical Review A 58 (1998), pp. 17991809 (cit. on p. 108).
[7] Lotfi Boubekeur and David.H. Lyth. 'Detecting a small perturbation through its nonGaussianity'. In: Phys.Rev. D73 (2006), p. 021301. arXiv: astroph/0504046 [astroph] (cit. on pp. 104, 108).
[8] F.R. Bouchet. 'Introductory overview of Eulerian and Lagrangian perturbation theories'. In: (1995). arXiv: astroph/9603013 [astroph] (cit. on p. 131).
[48] David Seery. 'Infrared e ects in inflationary correlation functions'. In: Class.Quant.Grav. 27 (2010), p. 124005. arXiv: 1005.1649 [astroph.CO] (cit. on p. 108).