Aspects of Bayesian inverse problems

0044 English OPEN
Agapiou, Sergios;
  • Subject: QA

The goal of this thesis is to contribute to the formulation and understanding\ud of the Bayesian approach to inverse problems in function space. To this end\ud we examine two important aspects of this approach: the frequentist asymptotic\ud properties of the posterior, ... View more
  • References (21)
    21 references, page 1 of 3

    [1] R. J. Adler. An introduction to continuity, extrema, and related topics for general Gaussian processes. Institute of Mathematical Statistics Lecture Notes| Monograph Series, 12. Institute of Mathematical Statistics, Hayward, CA, 1990.

    [2] S. Agapiou, J. M. Bardsley, O. Papaspiliopoulos, and A. M. Stuart. Analysis of the Gibbs sampler for hierarchical inverse problems. Arxiv preprint: 1311.1138.

    [3] S. Agapiou, S. Larsson, and A. M. Stuart. Posterior contraction rates for the Bayesian approach to linear ill-posed inverse problems. Stoch. Proc. Apl., 123(10):3828{3860, 2013.

    [4] S. Agapiou, A. M. Stuart, and Y. X. Zhang. Bayesian posterior contraction rates for linear severely ill-posed inverse problems. Arxiv preprint: 1210.1563 (to appear, J. Inverse Ill-posed Probl.).

    [5] H. Attouch, G. Buttazzo, and G. Michaille. Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. SIAM, 2006.

    [11] A. Beskos, G. Roberts, and A. Stuart. Optimal scalings for local MetropolisHastings chains on nonproduct targets in high dimensions. Ann. Appl. Probab., 19(3):863{898, 2009.

    [12] N. Bochkina. Consistency of the posterior distribution in generalized linear inverse problems. Inverse Problems, 29(9), 2013.

    [13] V. I. Bogachev. Gaussian measures, volume 62. Amer Mathematical Society, 1998.

    [14] L Cavalier. Nonparametric statistical inverse problems. Inverse Problems, 24(3):034004, 2008.

    [17] G. Da Prato. An introduction to in nite-dimensional analysis. Springer, 2005.

  • Metrics
Share - Bookmark