Aspects of Bayesian inverse problems

Subject: QA

References
(21)
[1] R. J. Adler. An introduction to continuity, extrema, and related topics for general Gaussian processes. Institute of Mathematical Statistics Lecture Notes Monograph Series, 12. Institute of Mathematical Statistics, Hayward, CA, 1990.
[2] S. Agapiou, J. M. Bardsley, O. Papaspiliopoulos, and A. M. Stuart. Analysis of the Gibbs sampler for hierarchical inverse problems. Arxiv preprint: 1311.1138.
[3] S. Agapiou, S. Larsson, and A. M. Stuart. Posterior contraction rates for the Bayesian approach to linear illposed inverse problems. Stoch. Proc. Apl., 123(10):3828{3860, 2013.
[4] S. Agapiou, A. M. Stuart, and Y. X. Zhang. Bayesian posterior contraction rates for linear severely illposed inverse problems. Arxiv preprint: 1210.1563 (to appear, J. Inverse Illposed Probl.).
[5] H. Attouch, G. Buttazzo, and G. Michaille. Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. SIAM, 2006.
[11] A. Beskos, G. Roberts, and A. Stuart. Optimal scalings for local MetropolisHastings chains on nonproduct targets in high dimensions. Ann. Appl. Probab., 19(3):863{898, 2009.
[12] N. Bochkina. Consistency of the posterior distribution in generalized linear inverse problems. Inverse Problems, 29(9), 2013.
[13] V. I. Bogachev. Gaussian measures, volume 62. Amer Mathematical Society, 1998.
[14] L Cavalier. Nonparametric statistical inverse problems. Inverse Problems, 24(3):034004, 2008.
[17] G. Da Prato. An introduction to in nitedimensional analysis. Springer, 2005.

Metrics
0views in OpenAIRE0views in local repository42downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads Warwick Research Archives Portal Repository  IRUSUK 0 42

 Download from


Cite this publication