Properties of geometrical realizations of substitutions associated to a family of Pisot numbers

0044 English OPEN
Sirvent, Víctor F;
  • Subject: QA

In this thesis we study some properties of the geometrical realizations of the dynamical systems that arise from the family of Pisot substitutions:\ud \ud 1 → 12\ud IIn :2 → 13\ud :\ud (n −1) → 1n\ud n → 1\ud \ud for n a positive integer greater than 2.\ud \ud In chapte... View more
  • References (10)

    [1] J. P. Allouche, Automates finis en theorie des nombres, Expo. Math 5 (1987), 239-266.

    [12] J .L. Chabert, Un demi-siecle de fractales: 1870-1920, Historia Mathelnatica, 17 (1990), 339-365.

    [26] G.A. Hedlund and M. 11orse, Symbolic dynamics, part II: Sturmian trajectorie..q, Alner. J. Math. 62 (1940) 1-42.

    [38] G. Rauzy, N ombres algebriques et substitutions, Bull. Soc. ~1ath. France 110 (1982), 147-178.

    [39] G. Rauzy, Suites a termes dans un alphabet fini, Seminaire de theorie des nombres de Bordeaux 25 (1982-1983), 1-16.

    [42] G. Rauzy, Sequences Defined by iterated morphisms, in Sequences(Napoles/Positano, 1988), Lectures Notes in Computer Science, Springer,New York, 1990, 275-286.

    [43] C. Series, The Geometry of M arkofJ numbers, Math. Intelligencer 7 (1985), 20-29.

    [44] 1. J. Schoenberg, On the Peano curve of Lebesgue, Bull. of the Ailler. 11:ath. Soc., 44, (1938), 519.

    [45] A. Thue, Uber unendliche Zeinchenreihen, Norske vid. Selsk. Skr. 1. Mat. Nat. I{l., Christiana, 7, (1906), 1-22.

    [46] A. Thue, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. 1. Mat. Nat. I{l., Christiana,l, (1912), 1-67.

  • Metrics
Share - Bookmark