Accurate shellcode recognition from network traffic data using artificial neural nets

Part of book or chapter of book English OPEN
Onotu, Patrick; Day, David; Rodrigues, Marcos;

This paper presents an approach to shellcode recognition directly from network traffic data using a multi-layer perceptron with back-propagation learning algorithm. Using raw network data composed of a mixture of shellcode, image files, and DLL-Dynamic Link Library file... View more
  • References (20)
    20 references, page 1 of 2

    [1] DAY, D. and ZHAO, Z. (2011). ”Protecting Against Address Space Layout Randomisation (ASLR) Compromises and Return-to-Libc Attacks Using Network Intrusion Detection Systems”, International Journal of Automation and Computing Vol. 8 no. 4, 472-83. December 6th 2011.

    [2] ZHAO Z. and AHN G. ”Using Instruction Sequence Abstraction for Shellcode Detection and Attribution” In: IEEE conference on Communications and Network Security. National Harbour, MD.

    [3] SHIN J., LAMBERT J.J. AND LACKEY J. ”Evaluating Shellcode Findings.” U.S. Patent 8,413,246 issued date April 2, 2013.

    [4] ANDERSON J.P. (1980). ”Computer Security Threat Monitoring and Surveillance”. Annual Technical Report. Fort Washington, Pennsylvania. J.P. Anderson Company.

    [5] DENNING D. (1987). ”An Intrusion-Detection Model”. IEEE Transactions on Software Engineering. Vol. SE-13, No. 2.

    [6] LUNT T.F. (1989). ”Real-Time Intrusion Detection”. Proceedings of IEEE COMPCON.

    [7] MUKHERJEE B., HEBERLEIN L.T. and LEVITT K.N. (1994). ”Network Intrusion Detection”. IEEE Network. Pp. 26-41.

    [8] FOX K.L., HENNING R.R. and REED J.H. (1990). ”A Neural Network Approach Towards Intrusion Detection”. In: 13th National Computer Security Conference. Washington D.C., USA.

    [9] DENAULT M., GRITZALIS D., KARAGIANNIS D. and SPIRAKIS P. (1994). ”Intrusion Detection: Approach and Performance Issues in Computers and Security”. The Securenet System. Vol.13, No. 6, pp. 495-507.

    [10] RYAN J., LIN M. and MIIKKULAINEN R. (1997). ”Intrusion Detection with Neural Networks: AI Approaches to Fraud Detection and Risk Management”. Papers from the 1997 AAAI Workshop (Providence, Rhode Island). Pp. 72-79. Menlo Park, CA: AAAI.

  • Metrics
Share - Bookmark