Rigidity and exotic models for the $K$–local stable homotopy category

Article, 0038 English OPEN
Roitzheim, Constanze (2007)
  • Publisher: MSP
  • Journal: (issn: 1465-3060)
  • Related identifiers: doi: 10.2140/gt.2007.11.1855
  • Subject: QA | stable homotopy theory | model categories | QA612 | Bousfield localisation | 55P42 | 55P60
    arxiv: Mathematics::Algebraic Topology | Mathematics::Category Theory

Can the model structure of a stable model category be recovered from the triangulated structure of its homotopy category? This paper introduces a new positive example for this, namely the [math] –local stable homotopy at the prime 2. For odd primes, however, this is not true: we discuss a counterexample given by Jens Franke and show how such exotic models for the [math] –local stable homotopy category at odd primes can be detected.
  • References (14)
    14 references, page 1 of 2

    [BF78] A. K. Bousfield and E. M. Friedlander. Homotopy theory of Γ­spaces, spectra, and bisimplicial sets. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, volume 658 of Lecture Notes in Math., pages 80-130. Springer, Berlin, 1978.

    [Bou75] A. K. Bousfield. The localization of spaces with respect to homology. Topology, 14:133-150, 1975.

    [Bou79] A. K. Bousfield. The localization of spectra with respect to homology. Topology, 18(4):257-281, 1979.

    [Bou85] A. K. Bousfield. On the homotopy theory of K ­local spectra at an odd prime. Amer. J. Math., 107(4):895-932, 1985.

    [CCW07] Francis Clarke, Martin Crossley, and Sarah Whitehouse. The discrete module category for the ring of K ­theory operations. Topology, 46(2):139-154, 2007.

    [Dug01] D. Dugger. Replacing model categories with simplicial ones. Trans. Amer. Math. Soc., 353(12):5003-5027 (electronic), 2001.

    [Hov99] M. Hovey. Model categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.

    [HS98] M.J. Hopkins and J.H. Smith. Nilpotence and stable homotopy theory. II. Ann. of Math. (2), 148(1):1-49, 1998.

    [Kel94] B. Keller. Deriving DG categories. Ann. Sci. E´cole Norm. Sup. (4), 27(1):63-102, 1994.

    [Qui67] D.G. Quillen. Homotopical algebra. Lecture Notes in Mathematics, No. 43. SpringerVerlag, Berlin, 1967.

  • Similar Research Results (3)
  • Metrics
    No metrics available
Share - Bookmark