Metal window electrodes for organic photovoltaics

Doctoral thesis English OPEN
Stec, Helena M.
  • Subject: QD | TK

The work presented in this thesis focuses on the development ultra-thin metal film\ud electrodes for organic photovoltaics (OPVs) with the aim of boosting device\ud performance, lowering the cost and/or extending the range potential application.\ud Chapter 1 gives a general overview of OPVs, including the materials used for\ud their fabrication and the fundamental processes underpinning OPV’s operation. The\ud experimental techniques and equipment used are described in Chapter 2. Chapter 3\ud describes the development of a solvent free method for the fabrication of highly\ud transparent ultra-thin Au films on glass based on co-deposition of a mixed molecular\ud adhesive layer prior to Au thermal evaporation. By integrating microsphere\ud lithography into the fabrication process the transparency could be improved via the\ud incorporation of a random array of micron-sized circular apertures into the film. In\ud Chapter 4 it is shown that these films are amenable to rapid thermal annealing to\ud realise highly crystalline window electrodes with improved transparency and\ud conductivity. By capping these films with a very thin transition metal oxide layer\ud their thermal stability can be dramatically improved, whilst at the same time\ud improving their far field transparency. In Chapter 5 the molecular adhesive method\ud for the fabrication of ultra-thin Au films on glass is translated to the technologically\ud important flexible substrates and extended to the lower cost coinage metals Ag and\ud Cu. In Chapter 6 a lithography-free approach to fabricating thin Au and Ag films\ud with a dense array of sub-wavelength apertures is reported. These electrodes support\ud surface plasmon resonances which couple strongly with visible light concentrating it\ud near to the electrode surface, thereby increasing light harvesting. Chapter 7 shows\ud how the electrodes developed in Chapter 3 can be used to investigate a fundamental\ud question of importance in OPV research and indicates the direction of future work.\ud The results of chapters 3, 5 and 6 have been published in peer reviewed scientific\ud journals.
  • References (26)
    26 references, page 1 of 3

    1. http://www.eia.gov/forecasts/ieo/ Accessed December, 2012.

    2. G. Maggio; G. Cacciola, Fuel 2012, 98, 111-123.

    3. I. S. Nashawi; A. Malallah; M. Al-Bisharah, Energy & Fuels 2010, 24, 1788- 1800.

    4. http://www.un-energy.org/sites/default/files/share/une/ren21_gsr2011.pdf Accessed December, 2012.

    5. J. S. Kim; M. Granstrom; R. H. Friend; N. Johansson; W. R. Salaneck; R. Daik; W. J. Feast; F. Cacialli, J. Appl. Phys. 1998, 84, (12), 6859-6870.

    6. Q. Volker, Renewable energy and climate change, Wiley: Chichester, 2010.

    7. http://www.map.ren21.net/GSR/GSR2012_low.pdf Accessed January, 2013.

    8. http://unisolar.com.ua/wp-content/uploads/2012/02/EPIA-market-report2011.pdf Accessed December, 2012.

    9. K. Kawajiri; T. Oozeki; Y. Genchi, Environ. Sci. Technol. 2011, 45, (20), 9030-9035.

    10. http://www.renewableenergyworld.com/rea/news/article/2012/03/germanysofficial-2011-solar-pv-stats-where-growth-is-happening Accessed November, 2012.

  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    42
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Warwick Research Archives Portal Repository - IRUS-UK 0 42
Share - Bookmark