From STM to nanomemory: a transfer of technology feasibility study

0044 English OPEN
Miller, Jimmie Andrew;
  • Subject: TK | QA76

Recent years have seen exponential increase in memory capacity for computer data storage. Increased bit density has been produced by decreasing feature sizes in microelectronic fabrication. As minimum microelectronic feature sizes are realized, new methods are being inv... View more
  • References (57)
    57 references, page 1 of 6

    W., and Pease R. F. W., "Imaging and modification of polymers by scanning tunneling and atomic force microscopy", J. Appl. Phys. 64, 1178 (1988).

    Lett. 55, 1727 (1989).

    Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E., "Surface studies by scanning tunneling microscopy", Phys. Rev. Lett. 49, 57 (1982).

    Binnig, G., and Rorher, H., "Scanning tunneling microscopy, and atomic probe", Scanning Electron Microscopy/1983/III 1079 (1983).

    Lett. 1, 36 (1986a).

    Binnig, G., Garcia, N., Rohrer, H., Soler, J. M., and Flores, F., "Electron-metal-surface interaction with vacuum tunneling: observation of the image force", Phys. Rev. B 30(8), 4816 (1984).

    Binnig, G., and Rohrer, H., "Scanning tunneling microscopy", IBM J. Res. Dev. 30, 355 (1986b).

    Bocko, Mark F., Stephenson, Kendall A., and Koch, Roger H., "Vacuum Tunneling Probe: A Reduced-Back-Action Transducer", Phys. Rev. Lett. 61, 726 (1988).

    Bocko, Mark F., "The scanning tunneling microscope as a high gain, low noise displacement sensor", Rev. Sci. Instrum. 61, 3763 (1990).

    Bryant, A., Smith D. P. E., Binnig G., Harrison, W. A., and Quate C. F., "Anomalous distance dependance in scanning tunneling microscopy", Appl. Phys. Lett. 49, 936 (1986).

  • Metrics
Share - Bookmark