An adaptive moving mesh method for thin film flow equations with surface tension

Article English OPEN
Abdulghani, A; Naire, S;
  • Publisher: Elsevier BV
  • Identifiers: doi: 10.1016/
  • Subject: QA
    acm: ComputingMethodologies_COMPUTERGRAPHICS
    arxiv: Mathematics::Numerical Analysis | Physics::Fluid Dynamics

We present an adaptive moving mesh method for the numerical solution of thin liquid film spreading flows with surface tension. We follow the r-adaptive moving mesh technique which utilises a mesh density function and moving mesh partial differential equations (MMPDEs) t... View more
  • References (12)
    12 references, page 1 of 2

    [6] A. Oron, S. H. Davis, S. G. Bankoff, Long-scale evolution of thin liq uid films, Rev. Mod. Phy. 69 (1997) 931-980.

    [7] R. Craster, O. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys. 81 (2009) 1131-1198.

    [8] A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices Amer. Math. Soc. 45 (6) (1998) 689 - 697.

    [9] S. Troian, E. Herbolzheimer, S. Safran, Model for the fingering instability of the spreading surfactant drops, Phys. Rev. Lett. 65 (1990) 333- 336.

    [10] A. L. Bertozzi, M. P. Brenner, Linear stability and transient growth in driven contact lines, Phys. Fluids 9 (1997) 530-539.

    [11] L. Kondic, Instabilities in gravity driven flow of thin fluid films, SIAM Rev. 45 (1) (2003) 95-115.

    [12] M. R. E. Warner, R. V. Craster, O. K. Matar, Fingering phenomena associated with insoluble surfactant spreading on thin liquid films, Fluid Mech. 510 (2004) 169-200.

    [13] B. Edmonstone, O. Matar, R. Craster, Surfactant-induced fingering phenomena in thin film flow down an inclined plane, Physica D: Nonlinear Phenomena 209 (2005) 62-79.

    [14] O. E. Jensen, S. Naire, The spreading and stability of a surfactant-laden drop on a prewetted substrate, J. Fluid Mech. 554 (2006) 5-24.

    [29] J. Verwer, J. Blom, J. M. Sanz-Serna, An adaptive moving grid m ethod for one-dimensional systems of partial differential equations, J. Comp. Phys. 82 (1989) 454-486.

  • Similar Research Results (2)
  • Metrics
Share - Bookmark