The nonassociative algebras used to build fast-decodable space-time block codes

Article, Preprint English OPEN
Pumpluen, Susanne ; Steele, Andrew (2015)
  • Publisher: American Institute of Mathematical Sciences
  • Related identifiers: doi: 10.3934/amc.2015.9.449
  • Subject: Computer Science - Information Theory | 17A35, 94B05
    arxiv: Computer Science::Information Theory

Let $K/F$ and $K/L$ be two cyclic Galois field extensions and $D=(K/F,\sigma,c)$ a cyclic algebra. Given an invertible element $d\in D$, we present three families of unital nonassociative algebras over $L\cap F$ defined on the direct sum of $n$ copies of $D$. Two of these families appear either explicitly or implicitly in the designs of fast-decodable space-time block codes in papers by Srinath, Rajan, Markin, Oggier, and the authors. We present conditions for the algebras to be division and propose a construction for fully diverse fast decodable space-time block codes of rate-$m$ for $nm$ transmit and $m$ receive antennas. We present a DMT-optimal rate-3 code for 6 transmit and 3 receive antennas which is fast-decodable, with ML-decoding complexity at most $\mathcal{O}(M^{15})$.
  • References (19)
    19 references, page 1 of 2

    [1] N. Markin, F. Oggier, \Iterated Space-Time Code Constructions from Cyclic Algebras," IEEE Transactions on Information Theory, vol. 59, no. 9, September 2013.

    [2] K. P. Srinath, B. S. Rajan, \Fast-decodable MIDO codes with large coding gain", IEEE Transactions on Information Theory (2) 60 2014, 992-1007.

    [3] J.-C. Petit, \Sur certains quasi-corps generalisant un type d'anneau-quotient", Seminaire Dubriel. Algebre et theorie des nombres 20 (1966 - 67), 1-18.

    [4] S. Pumplun, A. Steele, \Fast-decodable MIDO codes from nonassociative algebras," Int. J. of Information and Coding Theory (IJICOT) 3 (1) 2015, 15-38.

    [5] S. Pumplun, \How to obtain division algebras used for fast decodable space-time block codes", Adv. Math. Comm. 8 (3) (2014), 323 - 342.

    [6] K. P. Srinath, B. S. Rajan, \DMT-optimal, low ML-complexity STBC-schemes for asymmetric MIMO systems." 2012 IEEE International Symposium on Information Theory Proceedings (ISIT), 2012 , 3043-3047.

    [7] S. Pumplun, \Tensor products of nonassociative cyclic algebras." Available at [8] A. Steele, S. Pumplun, F. Oggier, \MIDO space-time codes from associative and non-associative cyclic algebras," Information Theory Workshop (ITW) 2012 IEEE (2012), 192-196.

    [9] S. Pumplun, T. Unger, \Space-time block codes from nonassociative division algebras." Adv. Math. Comm. 5 (3) (2011), 609-629.

    [10] R.D. Schafer, \An introduction to nonassociative algebras", Dover Publ., Inc., New York, 1995.

    [11] W.C. Waterhouse, \Nonassociative quaternion algebras", Algebras Groups Geom. 4 (1987), no. 3, 365{378.

  • Metrics
    No metrics available
Share - Bookmark