Fluorescence In Situ Hybridization on Early Porcine Embryos

Part of book or chapter of book English OPEN
Foster, Helen A. ; Sturmey, Roger G. ; Stokes, Paula J. ; Leese, Henry J. ; Bridger, Joanna M. ; Griffin, Darren K. (2010)

Insight into the normal and abnormal function of an interphase nucleus can be revealed by using fluorescence in situ hybridization (FISH) to determine chromosome copy number and/or the nuclear position of loci or chromosome territories. FISH has been used extensively in studies of mouse and human early embryos, however, translation of such methods to domestic species have been hindered by the presence of high levels of intracytoplasmic lipid in these embryos which can impede the efficiency of FISH. This chapter describes in detail a FISH protocol for overcoming this problem. Following extensive technical development, the protocol was derived and optimized for IVF porcine embryos to enable investigation of whole chromosome and subchromosomal regions by FISH during these early stages of development. Porcine embryos can be generated in-vitro using semen samples from commercial companies and oocytes retrieved from discarded abattoir material. According to our method, porcine embryos are lyzed and immobilized on slides using Hydrochloric acid and "Tween 20" detergent, prior to pretreatment with RNase A and pepsin before FISH. The method described has been optimized for subsequent analysis of FISH in two dimensions since organic solvents, which are necessary to remove the lipid, have the effect of flattening the nuclear structure. The work in this chapter has focussed on the pig; however, such methods could be applied to bovine, ovine, and canine embryos, all of which are rich in lipid.
  • References (23)
    23 references, page 1 of 3

    1. Hanel ML, Wevrick R (2001). The role of genomic imprinting in human developmental disorders: lessons from Prader-Willi syndrome. Clin Genet, 59, 156-164

    2. McKenzie LJ, Carson SA, Marcelli S, Rooney E, Cisneros P, Torskey S, Buster J, Simpson JL, Bischoff FZ. (2004). Nuclear chromosomal localization in human preimplantation embryos: correlation with aneuploidy and embryo morphology. Hum Reprod, 19, 2231-2237.

    3. Diblík J, Macek M Sr, Magli MC, Krejcí R, Gianaroli L. (2007) Chromosome topology in normal and aneuploid blastomeres from human embryos. Prenat Diagn, 27, 1091-1099.

    4. Finch KA, Fonseka G, Ioannou D, Hickson N, Barclay Z, Chatzimeletiou K, Mantzouratou A, Handyside A, Delhanty J, Griffin DK. (2008). Nuclear organisation in totipotent human nuclei and its relationship to chromosomal abnormality. J Cell Sci, 121, 655-663.

    5. Lanctôt C, Kaspar C, Cremer T. (2007). Positioning of the mouse Hox gene clusters in the nuclei of developing embryos and differentiating embryoid bodies. Exp Cell Res, 313, 1449-1459.

    6. Koehler D, Zakhartchenko V, Froenicke L, Stone G, Stanyon R, Wolf E, Cremer T, Brero A. (2009). Changes of higher order chromatin arrangements during major genome activation in bovine preimplantation embryos. Exp Cell Res, 315, 2053-2063.

    7. Lunney JK. (2007) Advances in swine biomedical model genomics. Int J Biolol Sci, 3, 179.

    8. Weiss RA. (1998) Transgenic pigs and virus adaptation. Nature, 391; 327-327.

    9. Guan TY, Holley RA (2003) Pathogen Survival in Swine Manure Environments and Transmission of Human Enteric Illness-A Review Sponsoring organizations: Manitoba Livestock Manure Management Initiative and Manitoba Rural Adaptation Council. In.: Am Soc Agronom, 383-392.

    10. Rettenberger G, Klett C, Zechner U, Kunz J, Vogel W, Hameister H. (1995) Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics, 26, 372-378.

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Kent Academic Repository - IRUS-UK 0 36
Share - Bookmark