Edge and total choosability of nearouterplanar graphs
 Publisher: International Press

References
(13)
13 references, page 1 of 2
 1
 2
[1] O. V. Borodin, A. V. Kostochka and D. R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997), 184{204.
[2] G. A. Dirac, A property of 4chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952), 85{92.
[3] M. N. Ellingham and L. Goddyn, List edge colourings of some 1factorable multigraphs, Combinatorica 16 (1996), 343{352.
[4] P. Erdo}s, A. L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, 1979, Congr. Numer. 26 (1980), 125{157.
[5] A. J. W. Hilton and P. D. Johnson, The Hall number, the Hall index, and the total Hall number of a graph, Discrete Applied Math. 94 (1999), 227{245.
[6] M. Juvan, B. Mohar and R. Skrekovski, List total colourings of graphs, Combin. Probab. Comput. 7 (1998), 181{188.
[7] M. Juvan, B. Mohar and R. Thomas, List edgecolorings of seriesparallel graphs, Electron. J. Combin. 6 (1999), #R42, 6pp.
[8] A. V. Kostochka and D. R. Woodall, Choosability conjectures and multicircuits, Discrete Math. 240 (2001), 123{143.
[9] W. Wang and K.W. Lih, Choosability, edge choosability, and total choosability of outerplane graphs, European J. Combin 22 (2001), 71{78.
[10] D. R. Woodall, A short proof of a theorem of Dirac's about Hadwiger's conjecture, J. Graph Theory 16 (1992), 79{80.

Metrics
0views in OpenAIRE0views in local repository6downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads Institutional Repository  IRUSUK 0 6

 Download from


Cite this publication