Effect of damping on the time variation of fields produced by a small pole tip with a soft under layer

Article English OPEN
Gao, K.Z. ; Chantrell, R.W. ; Boerner, E.D. (2004)

The time variation of magnetostatic fields generated by space and time varying magnetization configurations in small perpendicular pole tips is studied. The magnetization configurations are a response to external fields driving the pole tip and soft under layer (SUL). When the system damping is sufficiently small the magnetization excitations persist for a long time after reversal. The effects of damping parameter, position in the media, and discretization cell size on the magnitude of the time varying magnetostatic fields will be given. Decreasing the damping parameter increases the magnitude of the magnetostatic field variation.
  • References (11)
    11 references, page 1 of 2

    [1] V. L. Safonov and H. N. Bertram, “Magnetization reversal as a nonlinear multimode process,” J. Appl. Phys., vol. 85, pp. 5072-5074, 1999.

    [2] E. D. Boerner, H. N. Bertram, and H. Suhl, “Dynamic relaxation in thin films,” J. Appl. Phys., vol. 87, pp. 5389-5391, 2000.

    [3] K. Z. Gao and H. N. Bertram, “Write field analysis in perpendicular recording using three-dimensional micromagnetic simulation,” J. Appl. Phys., vol. 91, pp. 8369-8371, 2002.

    [4] J. G. Zhu and D. Z. Bai, “Understanding field rise time and magnetic damping in thin film recording heads,” J. Appl. Phys., vol. 93, pp. 6447-6449, 2003.

    [5] A. Y. Dobin and R. H. Victora, “Intrinsic nonlinear ferromagnetic relaxation in thin metallic films,” Phys. Rev. Lett., vol. 90, pp. 167-203, 2003.

    [6] K. Z. Gao and H. N. Bertram, “3D micromagnetic simulation of write field rise time in perpendicular recording,” IEEE Trans. Magn., vol. 38, pp. 2063-2065, 2002.

    [7] J. G. Zhu and H. N. Bertram, “Micromagnetic studies of thin metallic films,” J. Appl. Phys., vol. 63, pp. 3248-3252, 1988.

    [8] D. Goll, G. Schutz, and H. Kronmuller, “Critical thickness for high-remanent single-domain configurations in square ferromagnetic thin platelets,” Phys. Rev. B, vol. 67, p. 094414, 2003.

    [9] D. Berkov, “Fast switching of magnetic nanoparticles: Simulation of thermal noise effects using the Langevin dynamics,” IEEE Trans. Magn., vol. 38, pp. 2489-2495, 2002.

    [10] W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, and V. Tsiantos, “Scalable parallel micromagnetic solvers for magnetic nanostructures,” Comp. Mat. Sci., vol. 28, pp. 366-383, 2003.

  • Metrics
    No metrics available
Share - Bookmark