publication . Article . Other literature type . 2017

mechanotransduction and growth factor signalling to engineer cellular microenvironments

Cipitria, Amaia; Salmeron-Sanchez, Manuel;
Open Access
  • Published: 01 Aug 2017 Journal: Advanced Healthcare Materials, volume 6, page 1,700,052 (issn: 2192-2640, Copyright policy)
  • Publisher: Wiley
  • Country: India
Abstract
Engineering cellular microenvironments involves biochemical factors, the extracellular matrix (ECM) and the interaction with neighbouring cells. This progress report provides a critical overview of key studies that incorporate growth factor (GF) signalling and mechanotransduction into the design of advanced microenvironments. Materials systems have been developed for surface-bound presentation of GFs, either covalently tethered or sequestered through physico-chemical affinity to the matrix, as an alternative to soluble GFs. Furthermore, some materials contain both GF and integrin binding regions and thereby enable synergistic signalling between the two. Mechanot...
Subjects
free text keywords: Biomedical engineering, Nanotechnology, Tissue engineering, Extracellular matrix, Cell growth, Cell biology, Growth factor, medicine.medical_treatment, medicine, Signalling, Mechanotransduction, Regenerative medicine, Integrin, biology.protein, biology, Materials science
Related Organizations
Funded by
EC| HEALINSYNERGY
Project
HEALINSYNERGY
Material-driven Fibronectin Fibrillogenesis to Engineer Synergistic Growth Factor Microenvironments
  • Funder: European Commission (EC)
  • Project Code: 306990
  • Funding stream: FP7 | SP2 | ERC
142 references, page 1 of 10

[1] N. Gjorevski, N. Sachs, A. Manfrin, S. Giger, M. E. Bragina, P. Ordonez-Moran, H. Clevers, M. P. Lutolf, Nature 2016, 539, 560.

[2] K. A. Moore, I. R. Lemischka, Science 2006, 311, 1880.

[3] S. J. Morrison, D. T. Scadden, Nature 2014, 505, 327.

[4] A. Mantovani, P. Allavena, A. Sica, F. Balkwill, Nature 2008, 454, 436.

[5] B. D. Cosgrove, K. L. Mui, T. P. Driscoll, S. R. Caliari, K. D. Mehta, R. K. Assoian, J. A. Burdick, R. L. Mauck, Nat. Mater. 2016, 15, 1297.

[6] G. S. Schultz, A. Wysocki, Wound Repair Regen. 2009, 17, 153.

[7] H. K. Kleinman, D. Philp, M. P. Hoffman, Curr. Opin. Biotechnol. 2003, 14, 526.

[8] J. J. Rice, M. M. Martino, L. De Laporte, F. Tortelli, P. S. Briquez, J. A. Hubbell, Adv. Healthcare Mater. 2013, 2, 57.

[9] V. Sacchi, R. Mittermayr, J. Hartinger, M. M. Martino, K. M. Lorentz, S. Wolbank, A. Hofmann, R. A. Largo, J. S. Marschall, E. Groppa, R. Gianni-Barrera, M. Ehrbar, J. A. Hubbell, H. Redl, A. Banfi, Proc. Natl. Acad. Sci. USA 2014, 111, 6952.

[10] J. Reichert, A. Cipitria, D. Epari, S. Saifzadeh, P. Krishnakanth, A. Berner, H. Schell, M. Mehta, M. Schütz, G. Duda, D. Hutmacher, Sci. Transl. Med. 2012, 4, 141ra93.

[11] A. Cipitria, J. C. Reichert, D. R. Epari, S. Saifzadeh, A. Berner, H. Schell, M. Mehta, M. A. Schuetz, G. N. Duda, D. W. Hutmacher, Biomaterials 2013, 34, 9960.

[12] R. O. Hynes, Science 2009, 326, 1216.

[13] M. M. Martino, P. S. Briquez, K. Maruyama, J. A. Hubbell, Adv. Drug Deliv. Rev. 2015, 94, 41.

[14] P. S. Briquez, J. A. Hubbell, M. M. Martino, Adv. Wound Care 2015, 4, 479.

[15] A. C. Mitchell, P. S. Briquez, J. A. Hubbell, J. R. Cochran, Acta Biomater. 2016, 30, 1.

142 references, page 1 of 10
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue