On asymptotic Boronkov-Sakhanenko inequality with unbounded parameter set

Article English OPEN
Abu-Shanab, R ; Veretennikov, AY (2015)
  • Publisher: American Mathematical Society

Integral analogues of Cramér-Rao's inequalities for Bayesian parameter estimators proposed initially by Schützenberger (1958) and later by van Trees (1968) were further developed by Borovkov and Sakhanenko (1980). In this paper, new asymptotic versions of such inequalities are established under ultimately relaxed regularity assumptions and under a locally uniform nonvanishing of the prior density and with R1 as a parameter set. Optimality of Borovkov-Sakhanenko's asymptotic lower bound functional is established.
  • References (10)

    1. A. A. Borovkov, Mathematical Statistics, Gordon and Breach, Amsterdam, 1998.

    2. A. A. Borovkov and A. I. Sakhanenko, Estimates for averaged quadratic risk, Probab. Math. Statist. 1 (1980), no. 2, 185-195. (Russian)

    3. M. Fr´echet, Sur l'extension de certaines ´evaluations statistiques au cas de petits e´chantillons, Rev. Inst. Internat. Statist. 11 (1943), 182-205.

    4. R. D. Gill and B. Y. Levit, Applications of the van Trees inequality: a Bayesian Cramer-Rao bound, Bernoulli 1 (1995), 59-79.

    5. Reman Abu-Shanab, Information Inequalities and Parameter Estimation, PhD Thesis, University of Leeds, UK, 2009.

    6. A. E. Shemyakin, Rao-Cram´er type integral inequalities for the estimates of a vector parameter, Theory Probab. Appl. 33 (1985) no. 3, 426-434.

    7. A. E. Shemyakin, Rao-Cramer type multidimensional integral inequalities for parametric families with singularities, Sib. Math. J. (1992), 706-715.

    8. M. P. Schu¨tzenberger, A propos de l'in´egalit´e de Fr´echet-Cram´er, Publ. Inst. Statist. Univ. Paris 7 (1958), no. 3/4, 3-6; http://igm.univ-mlv.fr/~berstel/Mps/Travaux/A/ 1958FrechetInstStat.pdf

    9. H. van Trees, Detection, Estimation and Modulation Theory, vol. I, Wiley, New York, 1968.

    10. A. Yu. Veretennikov, On asymptotic information integral inequalities, Theory of Stochastic Processes 13(29) (2007), no. 1-2, 294-307. P.O.Box 32038, Department of Mathematics, College of Science, University of Bahrain, Kingdom of Bahrain E-mail address: raboshanab@uob.edu.bh School of Mathematics, University of Leeds, LS2 9JT, United Kingdom & Institute for Information Transmission Problems, Moscow, Russia & National Research University Higher School of Economics, Moscow, Russia E-mail address: a.veretennikov@leeds.ac.uk

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    White Rose Research Online - IRUS-UK 0 14
Share - Bookmark