Exact vibrational analysis of prismatic plate and sandwich structures

0044 English OPEN
Zare, Abdolreza;
  • Subject: TA

Transcendental stiffness matrices for vibration (or buckling) analysis have long been available for a range of structural members. Such stiffness matrices are exact in the sense that they are obtained from an analytical solution of the governing differential equations o... View more
  • References (98)
    98 references, page 1 of 10

    Abramovich, H., Eisenberger, M., and Shulepov, O. (1995). "Vibrations of multispan nonsymmetrical composite beams." Composites Engineering, 5(4), 397-404.

    Ahmed, K. M. (1971). "Free vibration of curved sandwich beams by the method of finite element." Journal o fSound and vibration, 18, 61-74.

    Ahmed, K. M. (1972). "Dynamic analysis of sandwich beams." Journal o f Sound and vibration, 21(3), 263-276.

    Allen, H. G. (1969). Analysis and design o fstructural sandwich panels, Pergamon press, Oxford.

    Ammar, S., Dhatt, G., and Fafard, M. (1996). "Exact stability model of space frames." Computers & Structures, 60(1), 59-71.

    Anderson, M. S., and Williams, F. W. (1986). "BUNVIS-RG: An exact buckling and vibration program for latice structures, with repetitive geometry and substructuring options." 27th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, San Antonio, Texas, 211-220.

    Armstrong, I. D. (1969). "The natural frequencies of multi-story frames." Structural Engineering, 47, 299-308.

    Baber, T. T., Maddox, R. A., and Orozco, C. E. (1998). "A finite element model for harmonically excited viscoelastic sandwich beams." Computers & Structures, 66(1), 105-113.

    Banerjee, J. R. (1989). "Coupled bending-torsional dynamic stiffiiess matrix for beam elements." International Journalfor Numerical Methods in Engineering, 28(6), 1283-98.

    Banerjee, J. R. (1997). "Dynamic stiffiiess formulation for structural elements: A general approach." Computers & Structures, 63(1), 101-103.

  • Metrics
Share - Bookmark